Fourth-order elliptic equations with critical exponents on compact Riemann varieties

被引:23
作者
Caraffa, D [1 ]
机构
[1] Univ Paris 06, F-75013 Paris, France
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2001年 / 80卷 / 09期
关键词
elliptic EDP with critical Sobolev exponent; elliptic EDP of the fourth order; Nonlinear analysis on manifolds; Sobolev spaces and inequalities;
D O I
10.1016/S0021-7824(01)01212-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On a compact Riemannian manifold (M-n, g) with n > 4, to solve some elliptic equations of the fourth-order with critical Sobolev exponent we have first to precise the best constant K-q in the Sobolev inequality H-2(q) subset of L-p with 1 less than or equal to q < n/2 and p = nq/(n - 2q). mu being the inf of the functional associated to the equation (E) with f some constant, we have always K-2(2) mu < 1 and if K-2(2) mu < 1 the equation (E) has a non-zero solution. Some geometrical applications of this theorem are given. In some cases the solution is strictly positive. (C) 2001 Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:941 / 960
页数:20
相关论文
共 12 条
[1]  
AUBIN T, 1976, B SCI MATH, V100, P149
[2]  
AUBIN T, 1976, J MATH PURE APPL, V55, P269
[3]  
Aubin T., 1976, J. Di ff erential Geom., V11, P573
[4]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[5]   CRITICAL EXPONENTS, CRITICAL DIMENSIONS AND THE BIHARMONIC OPERATOR [J].
EDMUNDS, DE ;
FORTUNATO, D ;
JANNELLI, E .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1990, 112 (03) :269-289
[6]  
ESTEBAN MJ, 1992, P ROY SOC EDINB A, V93, P1
[7]  
Lions P. L., 1985, Rev. Mat. Iberoam., V1, P145
[8]   A GENERAL VARIATIONAL IDENTITY [J].
PUCCI, P ;
SERRIN, J .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1986, 35 (03) :681-703
[9]  
VANDERVORST RCA, 1991, 4 ORDER ELLIPTIC EQU
[10]  
VANDERVORST RCA, 1991, ARCH RATIONAL MECH A, V116, P375