Robust Neural Networks Learning: New Approaches

被引:1
作者
Shibzukhov, Z. M. [1 ]
机构
[1] RAS, Inst Appl Math & Automat, KBSC, Nalchik, Russia
来源
ADVANCES IN NEURAL NETWORKS - ISNN 2018 | 2018年 / 10878卷
关键词
Neural network; Averaging aggregation function; Empirical risk minimization; Winsorized sum; Robust learning;
D O I
10.1007/978-3-319-92537-0_29
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The paper suggests an extended version of principle of empirical risk minimization and principle of smoothly winsorized sums minimization for robust neural networks learning. It's based on using of Maveraging functions instead of the arithmetic mean for empirical risk estimation (M-risk). Theese approaches generalize robust algorithms based on using median and quantiles for estimation of mean losses. An iteratively reweighted schema for minimization of M-risk is proposed. This schema allows to use weighted version of traditional back propagation algorithms for neural networks learning in presence of outliers.
引用
收藏
页码:247 / 255
页数:9
相关论文
共 15 条
  • [1] Beliakov G, 2016, STUD FUZZ SOFT COMP, V329, P1, DOI 10.1007/978-3-319-24753-3
  • [2] Beliakov G., 2011, TECHNICAL REPORT, DOI [10.1080/02331934.2012.674946, DOI 10.1080/02331934.2012.674946]
  • [3] Aggregation functions based on penalties
    Calvo, Tomasa
    Beliakov, Gleb
    [J]. FUZZY SETS AND SYSTEMS, 2010, 161 (10) : 1420 - 1436
  • [4] Grabich M., 2009, SERIES
  • [5] Huber P. J., 2004, ROBUST STAT
  • [6] Ma Yifei, 2011, the 16th IFAC World Congress, V44, P11208
  • [7] Mesiar R., 2008, FUZZY SETS THEIR EXT, DOI [10.1016/j.fss.2009.05.012, DOI 10.1016/J.FSS.2009.05.012]
  • [8] ASYMMETRIC LEAST-SQUARES ESTIMATION AND TESTING
    NEWEY, WK
    POWELL, JL
    [J]. ECONOMETRICA, 1987, 55 (04) : 819 - 847
  • [9] Rousseeuw P., 1987, J AM STAT ASSOC, V79, P871
  • [10] Rousseeuw P. J., 1987, ROBUST REGRESSION OU