Cell decomposition and definable functions for weak p-adic structures

被引:2
作者
Leenknegt, Eva [1 ]
机构
[1] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
关键词
Cell decomposition; quantifier elimination; p-adic geometry; minimality; THEOREM; REDUCTS; VERSION; SETS;
D O I
10.1002/malq.201200031
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We develop a notion of cell decomposition suitable for studying weak p-adic structures (reducts of p-adic fields where addition and multiplication are not (everywhere) definable). As an example, we consider a structure with restricted addition. (C) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:482 / 497
页数:16
相关论文
共 16 条
[1]  
[Anonymous], 1998, Tame topology and ominimal structures, DOI DOI 10.1017/CBO9780511525919
[2]   AN ISOMORPHISM THEOREM FOR HENSELIAN ALGEBRAIC EXTENSIONS OF VALUED FIELDS [J].
BASARAB, SA ;
KUHLMANN, FV .
MANUSCRIPTA MATHEMATICA, 1992, 77 (2-3) :113-126
[3]   A VERSION OF p-ADIC MINIMALITY [J].
Cluckers, Raf ;
Leenknegt, Eva .
JOURNAL OF SYMBOLIC LOGIC, 2012, 77 (02) :621-630
[5]  
DENEF J, 1986, J REINE ANGEW MATH, V369, P154
[6]   A version of o-minimality for the p-adics [J].
Haskell, D ;
MacPherson, D .
JOURNAL OF SYMBOLIC LOGIC, 1997, 62 (04) :1075-1092
[7]   QUANTIFIER ELIMINATION FOR HENSELIAN FIELDS RELATIVE TO ADDITIVE AND MULTIPLICATIVE CONGRUENCES [J].
KUHLMANN, FV .
ISRAEL JOURNAL OF MATHEMATICS, 1994, 85 (1-3) :277-306
[8]  
Leenknegt E., 2011, THESIS KU LEUVEN
[9]  
Leenknegt E., 2012, MATHLO12054178
[10]   Cell decomposition for semi-affine structures on p-adic fields [J].
Leenknegt, Eva .
JOURNAL OF LOGIC AND ANALYSIS, 2012, 4