iBMQ: a R/Bioconductor package for integrated Bayesian modeling of eQTL data

被引:11
作者
Imholte, Greg C. [1 ]
Scott-Boyer, Marie-Pier [2 ,3 ]
Labbe, Aurelie [4 ]
Deschepper, Christian F. [2 ,3 ]
Gottardo, Raphael [1 ,5 ]
机构
[1] Univ Washington, Dept Stat, Seattle, WA 98195 USA
[2] Inst Rech Clin Montreal, Montreal, PQ H2W 1R7, Canada
[3] Univ Montreal, Montreal, PQ H2W 1R7, Canada
[4] McGill Univ, Fac Med, Dept Epidemiol Biostat & Occupat Hlth, Montreal, PQ H3A 1A2, Canada
[5] Fred Hutchinson Canc Res Ctr, Vaccine & Infect Dis Div, Seattle, WA 98109 USA
关键词
GENE-EXPRESSION;
D O I
10.1093/bioinformatics/btt485
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Recently, mapping studies of expression quantitative loci (eQTL) (where gene expression levels are viewed as quantitative traits) have provided insight into the biology of gene regulation. Bayesian methods provide natural modeling frameworks for analyzing eQTL studies, where information shared across markers and/or genes can increase the power to detect eQTLs. Bayesian approaches tend to be computationally demanding and require specialized software. As a result, most eQTL studies use univariate methods treating each gene independently, leading to suboptimal results. Results: We present a powerful, computationally optimized and free open-source R package, iBMQ. Our package implements a joint hierarchical Bayesian model where all genes and SNPs are modeled concurrently. Model parameters are estimated using a Markov chain Monte Carlo algorithm. The free and widely used openMP parallel library speeds up computation. Using a mouse cardiac dataset, we show that iBMQ improves the detection of large trans-eQTL hotspots compared with other state-of-the-art packages for eQTL analysis.
引用
收藏
页码:2797 / 2798
页数:2
相关论文
共 6 条
[1]   R/qtl: QTL mapping in experimental crosses [J].
Broman, KW ;
Wu, H ;
Sen, S ;
Churchill, GA .
BIOINFORMATICS, 2003, 19 (07) :889-890
[2]   Data structures and algorithms for analysis of genetics of gene expression with Bioconductor: GGtools 3.x [J].
Carey, Vincent J. ;
Davis, Adam R. ;
Lawrence, Michael F. ;
Gentleman, Robert ;
Raby, Benjamin A. .
BIOINFORMATICS, 2009, 25 (11) :1447-1448
[3]   Revealing the architecture of gene regulation: the promise of eQTL studies [J].
Gilad, Yoav ;
Rifkin, Scott A. ;
Pritchard, Jonathan K. .
TRENDS IN GENETICS, 2008, 24 (08) :408-415
[4]   Detecting differential gene expression with a semiparametric hierarchical mixture method [J].
Newton, MA ;
Noueiry, A ;
Sarkar, D ;
Ahlquist, P .
BIOSTATISTICS, 2004, 5 (02) :155-176
[5]  
Scott-Boyer MP, 2012, STAT APPL GENET MOL, V11, DOI [10.1515/1544-6115.6, 10.1515/1544-6115.1760]
[6]   Genome-Wide Detection of Gene Coexpression Domains Showing Linkage to Regions Enriched with Polymorphic Retrotransposons in Recombinant Inbred Mouse Strains [J].
Scott-Boyer, Marie-Pier ;
Deschepper, Christian F. .
G3-GENES GENOMES GENETICS, 2013, 3 (04) :597-605