The δ - sensitivity and its application to stochastic optimal control of nonlinear diffusions

被引:0
作者
Theodorou, Evangelos A. [1 ]
Todorov, Emo [1 ]
机构
[1] Univ Washington, Dept Comp Sci & Engn, Seattle, WA 98195 USA
来源
2013 AMERICAN CONTROL CONFERENCE (ACC) | 2013年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We provide optimal control laws by using tools from stochastic calculus of variations and the mathematical concept of delta-sensitivity. The analysis relies on logarithmic transformations of the value functions and the use of linearly solvable Partial Differential Equations(PDEs). We derive the corresponding optimal control as a function of the delta-sensitivity of the logarithmic transformation of the value function for the case of nonlinear diffusion processes affine in control and noise.
引用
收藏
页码:4209 / 4214
页数:6
相关论文
共 50 条
[31]   The stochastic maximum principle in optimal control of singular diffusions with non linear coefficients [J].
Bahlali, Seid ;
Chala, Adel .
RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2005, 13 (01) :1-10
[32]   Sufficient Stochastic Maximum Principle for the Optimal Control of Jump Diffusions and Applications to Finance [J].
N. C. Framstad ;
B. Øksendal ;
A. Sulem .
Journal of Optimization Theory and Applications, 2004, 121 :77-98
[33]   Nonlinear Optimal Control With Control Constraints Based on FBDEs and Its Application to AGV [J].
Lv, Chuanzhi ;
Li, Hongdan ;
Peng, Kai ;
Yin, Xunmin ;
Zhang, Huanshui .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2025, 72 (06) :6402-6411
[34]   Predictor-based control of stochastic systems with nonlinear diffusions and input delay [J].
Cacace, Filippo ;
Germani, Alfredo ;
Manes, Costanzo ;
Papi, Marco .
AUTOMATICA, 2019, 107 :43-51
[35]   OPTIMAL CONTROL FOR DIFFUSIONS ON GRAPHS [J].
Florescu, Laura ;
Peres, Yuval ;
Racz, Miklos Z. .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2018, 32 (04) :2941-2972
[36]   THE OPTIMAL-CONTROL OF DIFFUSIONS [J].
ELLIOTT, RJ .
APPLIED MATHEMATICS AND OPTIMIZATION, 1990, 22 (03) :229-240
[37]   Nonlinear Optimal Control for Stochastic Dynamical Systems [J].
Lanchares, Manuel ;
Haddad, Wassim M. .
MATHEMATICS, 2024, 12 (05)
[38]   Optimal Control of a Nonlinear Stochastic Schrodinger Equation [J].
Keller, Diana .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2015, 167 (03) :862-873
[39]   Nonlinear stochastic optimal control of viscoelastic systems [J].
Xiong, Hao ;
Zhu, Weiqiu .
JOURNAL OF VIBRATION AND CONTROL, 2015, 21 (05) :1029-1040
[40]   Optimal control over nonlinear stochastic systems [J].
Trigub M.V. .
Ukrainian Mathematical Journal, 1999, 51 (4) :592-603