Universal surgery bounds on hyperbolic 3-manifolds

被引:0
作者
Koundouros, S [1 ]
机构
[1] Univ Oxford, Inst Math, Oxford OX1 3LB, England
基金
英国工程与自然科学研究理事会;
关键词
Dehn surgery; hyperbolic; 3-manifold; injectivity radius; word-hyperbolic;
D O I
10.1016/j.top.2003.03.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate Dehn surgery in relation to the injectivity radius of a closed hyperbolic 3-manifold M. We show that the injectivity radius has global implications for the topology of M by obtaining some universal restrictions, characterised by inj(M), on the possible surgery descriptions of M. In particular, we show that provided inj(M) is sufficiently large, then M cannot be obtained by p/q surgery on a knot in S-3 with \q\ > 4. (C) 2003 Elsevier Ltd. All rights reserved.
引用
收藏
页码:497 / 512
页数:16
相关论文
共 4 条
[1]   Distinguished subgroups and quotients of hyperbolic groups [J].
Delzant, T .
DUKE MATHEMATICAL JOURNAL, 1996, 83 (03) :661-682
[2]  
Ghys E., 1990, Progress in Mathematics, V83
[3]  
Gromov M., 1987, Math. Sci. Res. Inst. Publ., V8, P75, DOI [DOI 10.1007/978-1-4613-9586-7_3, 10.1007/978-1-4613-9586-7_3]
[4]  
Thurston W.P., 1979, The Geometry and Topology of 3-Manifolds