Positive solutions for nonlinear nonhomogeneous parametric Robin problems

被引:29
作者
Papageorgiou, Nikolaos S. [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
Repovs, Dusan D. [4 ,5 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[3] Univ Craiova, Dept Math, St AI Cuza 13, Craiova 200585, Romania
[4] Univ Ljubljana, Fac Educ, Ljubljana 1000, Slovenia
[5] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
关键词
Robin boundary condition; nonlinear nonhomogeneous differential operator; nonlinear regularity; nonlinear maximum principle; bifurcation-type result; extremal positive solution; LINEAR ELLIPTIC-EQUATIONS; AMBROSETTI-RABINOWITZ CONDITION; P-LAPLACIAN-TYPE; MULTIPLE SOLUTIONS; LOCAL MINIMIZERS; NODAL SOLUTIONS; BIFURCATION; EXISTENCE; SOBOLEV; SIGN;
D O I
10.1515/forum-2017-0124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a parametric Robin problem driven by a nonlinear nonhomogeneous differential operator and with a superlinear Caratheodory reaction term. We prove a bifurcation-type theorem for small values of the parameter. Also, we show that as the parameter lambda > 0 approaches zero, we can find positive solutions with arbitrarily big and arbitrarily small Sobolev norm. Finally, we show that for every admissible parameter value, there is a smallest positive solution u*(A) of the problem, and we investigate the properties of the map lambda -> u*A.
引用
收藏
页码:553 / 580
页数:28
相关论文
共 50 条
[41]   EXISTENCE OF POSITIVE SOLUTIONS FOR NONLINEAR ROBIN PROBLEMS WITH GRADIENT DEPENDENCE [J].
Papageorgiou, Nikolaos S. ;
Zhang, Chao .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2019, 44 :739-753
[42]   Global Multiplicity of Positive Solutions for Nonlinear Robin Problems with an Indefinite Potential Term [J].
Ozturk, Eylem ;
Papageorgiou, Nikolaos S. .
RESULTS IN MATHEMATICS, 2024, 79 (03)
[43]   SOLUTIONS WITH SIGN INFORMATION FOR NONLINEAR NONHOMOGENEOUS ELLIPTIC EQUATIONS [J].
Papageorgiou, Nikolaos S. ;
Ridulescu, Vicentiu D. .
TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2015, 45 (02) :575-600
[44]   Nonlinear nonhomogeneous Robin problems with gradient dependent reaction [J].
Gasinski, Leszek ;
Krech, Ireneusz ;
Papageorgiou, Nikolaos S. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2020, 55
[45]   SOLUTIONS OF NONLINEAR NONHOMOGENEOUS NEUMANN AND DIRICHLET PROBLEMS [J].
Hu, Shouchuan ;
Papageorgiou, Nikolas S. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2013, 12 (06) :2889-2922
[46]   Solutions with sign information for nonlinear nonhomogeneous problems [J].
Papageorgiou, Nikolaos S. ;
Winkert, Patrick .
MATHEMATISCHE NACHRICHTEN, 2019, 292 (04) :871-891
[47]   Nonlinear Nonhomogeneous Robin Problems with Almost Critical and Partially Concave Reaction [J].
Nikolaos S. Papageorgiou ;
Dušan D. Repovš ;
Calogero Vetro .
The Journal of Geometric Analysis, 2020, 30 :1774-1803
[48]   Multiplicity Results for Nonlinear Nonhomogeneous Robin Problems with Indefinite Potential Term [J].
Bai, Yunru ;
Papageorgiou, Nikolaos S. ;
Zeng, Shengda .
RESULTS IN MATHEMATICS, 2023, 78 (04)
[49]   Multiplicity Results for Nonlinear Nonhomogeneous Robin Problems with Indefinite Potential Term [J].
Yunru Bai ;
Nikolaos S. Papageorgiou ;
Shengda Zeng .
Results in Mathematics, 2023, 78
[50]   POSITIVE SOLUTIONS FOR ROBIN PROBLEMS WITH GENERAL POTENTIAL AND LOGISTIC REACTION [J].
Hu, Shouchuan ;
Papageorgiou, Nikolaos S. .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (06) :2489-2507