共 50 条
Positive solutions for nonlinear nonhomogeneous parametric Robin problems
被引:29
作者:
Papageorgiou, Nikolaos S.
[1
]
Radulescu, Vicentiu D.
[2
,3
]
Repovs, Dusan D.
[4
,5
]
机构:
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[3] Univ Craiova, Dept Math, St AI Cuza 13, Craiova 200585, Romania
[4] Univ Ljubljana, Fac Educ, Ljubljana 1000, Slovenia
[5] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
关键词:
Robin boundary condition;
nonlinear nonhomogeneous differential operator;
nonlinear regularity;
nonlinear maximum principle;
bifurcation-type result;
extremal positive solution;
LINEAR ELLIPTIC-EQUATIONS;
AMBROSETTI-RABINOWITZ CONDITION;
P-LAPLACIAN-TYPE;
MULTIPLE SOLUTIONS;
LOCAL MINIMIZERS;
NODAL SOLUTIONS;
BIFURCATION;
EXISTENCE;
SOBOLEV;
SIGN;
D O I:
10.1515/forum-2017-0124
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We study a parametric Robin problem driven by a nonlinear nonhomogeneous differential operator and with a superlinear Caratheodory reaction term. We prove a bifurcation-type theorem for small values of the parameter. Also, we show that as the parameter lambda > 0 approaches zero, we can find positive solutions with arbitrarily big and arbitrarily small Sobolev norm. Finally, we show that for every admissible parameter value, there is a smallest positive solution u*(A) of the problem, and we investigate the properties of the map lambda -> u*A.
引用
收藏
页码:553 / 580
页数:28
相关论文
共 50 条