Positive solutions for nonlinear nonhomogeneous parametric Robin problems

被引:29
作者
Papageorgiou, Nikolaos S. [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
Repovs, Dusan D. [4 ,5 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[3] Univ Craiova, Dept Math, St AI Cuza 13, Craiova 200585, Romania
[4] Univ Ljubljana, Fac Educ, Ljubljana 1000, Slovenia
[5] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
关键词
Robin boundary condition; nonlinear nonhomogeneous differential operator; nonlinear regularity; nonlinear maximum principle; bifurcation-type result; extremal positive solution; LINEAR ELLIPTIC-EQUATIONS; AMBROSETTI-RABINOWITZ CONDITION; P-LAPLACIAN-TYPE; MULTIPLE SOLUTIONS; LOCAL MINIMIZERS; NODAL SOLUTIONS; BIFURCATION; EXISTENCE; SOBOLEV; SIGN;
D O I
10.1515/forum-2017-0124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a parametric Robin problem driven by a nonlinear nonhomogeneous differential operator and with a superlinear Caratheodory reaction term. We prove a bifurcation-type theorem for small values of the parameter. Also, we show that as the parameter lambda > 0 approaches zero, we can find positive solutions with arbitrarily big and arbitrarily small Sobolev norm. Finally, we show that for every admissible parameter value, there is a smallest positive solution u*(A) of the problem, and we investigate the properties of the map lambda -> u*A.
引用
收藏
页码:553 / 580
页数:28
相关论文
共 50 条
  • [31] Nonlinear Nonhomogeneous Robin Problems with Superlinear Reaction Term
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    [J]. ADVANCED NONLINEAR STUDIES, 2016, 16 (04) : 737 - 764
  • [32] NODAL SOLUTIONS FOR NONLINEAR NON-HOMOGENEOUS ROBIN PROBLEMS WITH AN INDEFINITE POTENTIAL
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2018, 61 (04) : 943 - 959
  • [33] Existence, nonexistence and multiplicity of positive solutions for nonlinear, nonhomogeneous Neumann problems
    Papageorgiou, Nikolaos S.
    Papalini, Francesca
    [J]. MANUSCRIPTA MATHEMATICA, 2017, 154 (1-2) : 257 - 274
  • [34] Positive Solutions for Nonlinear Robin Problems with Concave Terms
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    Winowski, Krzysztof
    [J]. JOURNAL OF CONVEX ANALYSIS, 2019, 26 (04) : 1145 - 1174
  • [35] Positive solutions for nonlinear Robin problems with indefinite potential and competing nonlinearities
    Leonardi, S.
    Papageorgiou, Nikolaos S.
    [J]. POSITIVITY, 2020, 24 (02) : 339 - 367
  • [36] Nonlinear, Nonhomogeneous Robin Problems with Indefinite Potential and General Reaction
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2020, 81 (03) : 823 - 857
  • [37] POSITIVE SOLUTIONS FOR PARAMETRIC NONLINEAR PERIODIC PROBLEMS WITH COMPETING NONLINEARITIES
    Aizicovici, Sergiu
    Papageorgiou, Nikolaos S.
    Staicu, Vasile
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2015,
  • [38] Positive solutions to nonlinear nonhomogeneous inclusion problems with dependence on the gradient
    Zeng, Shengda
    Liu, Zhenhai
    Migorski, Stanislaw
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 463 (01) : 432 - 448
  • [39] Positive solutions for nonlinear nonhomogeneous Dirichlet problems with concave-convex nonlinearities
    Papageorgiou, Nikolaos S.
    Winkert, Patrick
    [J]. POSITIVITY, 2016, 20 (04) : 945 - 979
  • [40] POSITIVE SOLUTIONS FOR PARAMETRIC SEMILINEAR ROBIN PROBLEMS WITH INDEFINITE AND UNBOUNDED POTENTIAL
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    [J]. MATHEMATICA SCANDINAVICA, 2017, 121 (02) : 263 - 292