Positive solutions for nonlinear nonhomogeneous parametric Robin problems

被引:29
作者
Papageorgiou, Nikolaos S. [1 ]
Radulescu, Vicentiu D. [2 ,3 ]
Repovs, Dusan D. [4 ,5 ]
机构
[1] Natl Tech Univ Athens, Dept Math, Zografou Campus, Athens 15780, Greece
[2] King Abdulaziz Univ, Fac Sci, Dept Math, POB 80203, Jeddah 21589, Saudi Arabia
[3] Univ Craiova, Dept Math, St AI Cuza 13, Craiova 200585, Romania
[4] Univ Ljubljana, Fac Educ, Ljubljana 1000, Slovenia
[5] Univ Ljubljana, Fac Math & Phys, Ljubljana 1000, Slovenia
关键词
Robin boundary condition; nonlinear nonhomogeneous differential operator; nonlinear regularity; nonlinear maximum principle; bifurcation-type result; extremal positive solution; LINEAR ELLIPTIC-EQUATIONS; AMBROSETTI-RABINOWITZ CONDITION; P-LAPLACIAN-TYPE; MULTIPLE SOLUTIONS; LOCAL MINIMIZERS; NODAL SOLUTIONS; BIFURCATION; EXISTENCE; SOBOLEV; SIGN;
D O I
10.1515/forum-2017-0124
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a parametric Robin problem driven by a nonlinear nonhomogeneous differential operator and with a superlinear Caratheodory reaction term. We prove a bifurcation-type theorem for small values of the parameter. Also, we show that as the parameter lambda > 0 approaches zero, we can find positive solutions with arbitrarily big and arbitrarily small Sobolev norm. Finally, we show that for every admissible parameter value, there is a smallest positive solution u*(A) of the problem, and we investigate the properties of the map lambda -> u*A.
引用
收藏
页码:553 / 580
页数:28
相关论文
共 50 条
  • [21] POSITIVE AND NODAL SOLUTIONS FOR PARAMETRIC NONLINEAR ROBIN PROBLEMS WITH INDEFINITE POTENTIAL
    Fragnelli, Genni
    Mugnai, Dimitri
    Papageorgiou, Nikolaos S.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (11) : 6133 - 6166
  • [22] Parametric nonlinear resonant Robin problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    Repovs, Dusan D.
    MATHEMATISCHE NACHRICHTEN, 2019, 292 (11) : 2456 - 2480
  • [23] Nonlinear Nonhomogeneous Robin Problems with Almost Critical and Partially Concave Reaction
    Papageorgiou, Nikolaos S.
    Repovs, Dusan D.
    Vetro, Calogero
    JOURNAL OF GEOMETRIC ANALYSIS, 2020, 30 (02) : 1774 - 1803
  • [24] MULTIPLICITY OF SOLUTIONS FOR NONLINEAR NONHOMOGENEOUS ROBIN PROBLEMS
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (02) : 601 - 611
  • [25] Multiple solutions with precise sign for nonlinear parametric Robin problems
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2014, 256 (07) : 2449 - 2479
  • [26] Nonlinear nonhomogeneous Robin problems with dependence on the gradient
    Bai, Yunru
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    BOUNDARY VALUE PROBLEMS, 2018, : 1 - 24
  • [27] Nonlinear Parametric Robin Problems with Combined Nonlinearities
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    ADVANCED NONLINEAR STUDIES, 2015, 15 (03) : 715 - 748
  • [28] POSITIVE SOLUTIONS OF NONLINEAR ROBIN EIGENVALUE PROBLEMS
    Papageorgiou, Nikolaos S.
    Radulescu, Vicentiu D.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2016, 144 (11) : 4913 - 4928
  • [29] POSITIVE SOLUTIONS FOR NONLINEAR NONHOMOGENEOUS PARAMETRIC EQUATIONS
    Papageorgiou, Nikolaos S.
    Smyrlis, George
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2015, 46 (01) : 1 - 15
  • [30] NONLINEAR NONHOMOGENEOUS ROBIN PROBLEMS WITH CONVECTION
    Candito, Pasquale
    Gasinski, Leszek
    Papageorgiou, Nikolaos S.
    ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2019, 44 : 755 - 767