Embedding Steiner triple systems in hexagon triple systems

被引:12
作者
Lindner, C. C. [1 ]
Quattrocchi, Gaetano [2 ]
Rodger, C. A. [1 ]
机构
[1] Auburn Univ, Dept Math, Auburn, AL 36849 USA
[2] Univ Catania, Dipartimento Matemat, I-95125 Catania, Italy
关键词
Steiner triple systems; Embedding; 6-cycles;
D O I
10.1016/j.disc.2007.12.040
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A hexagon triple is the graph consisting of the three triangles (triples) {a. b, c}, {c, d, e}, and {e, f, a}, where a, b, c, d, e, and f are distinct. The triple {a, c, e} is called an inside triple. A hexagon triple system of order n is a pair (X, H) where H is a collection of edge disjoint hexagon triples which partitions the edge set of K(n) with vertex set X. The inside triples form a partial Steiner triple system. We show that any Steiner triple system of order n can be embedded in the inside triples of a hexagon triple system of order approximately 3(n). (C) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:487 / 490
页数:4
相关论文
共 8 条