ChipX: A Novel Microfluidic Chip for Counter-Diffusion Crystallization of Biomolecules and in Situ Crystal Analysis at Room Temperature

被引:42
作者
Pinker, Franziska [1 ,2 ]
Brun, Mathieu [3 ,4 ]
Morin, Pierre [3 ,4 ]
Deman, Anne-Laure [3 ,4 ]
Chateaux, Jean-Francois [3 ,4 ]
Olieric, Vincent [5 ]
Stirnimann, Christian [5 ]
Lorber, Bernard [1 ,2 ]
Terrier, Nicolas [3 ,4 ]
Ferrigno, Rosaria [3 ,4 ]
Sauter, Claude [1 ,2 ]
机构
[1] Univ Strasbourg, Architecture & React ARN, F-67084 Strasbourg, France
[2] CNRS, IBMC, F-67084 Strasbourg, France
[3] Univ Lyon, F-69003 Lyon, France
[4] Univ Lyon 1, Inst Nanotechnol Lyon, CNRS UMR5270, F-69622 Villeurbanne, France
[5] Paul Scherrer Inst, Swiss Light Source, CH-5232 Villigen, Switzerland
关键词
PROTEIN CRYSTALLIZATION; RAY; MODEL;
D O I
10.1021/cg301757g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Microfluidic technology has opened new possibilities for the crystallization of biological macromolecules during the past decade. Microfluidic systems offer numerous advantages over conventional crystal growth methods. They enable easy handling of nanovolumes of solutions, extreme miniaturization, and parallelization of crystallization assays, especially for high-throughput screening applications. Our goal was to design a versatile, low cost, and easy-to-use crystallintion chip based on counter-diffusion that is compatible with on-chip crystallographic characterization. The ChipX is a microfluidic chip made of cyclic olefin copolymer. It was used to grow crystals of biomolecules and perform complete X-ray diffraction analyses on synchrotron sources. Our results demonstrate that accurate crystallographic data can be collected at room temperature directly from ChipX microfluidic devices for both experimental single-wavelength anomalous dispersion phasing and structure refinement.
引用
收藏
页码:3333 / 3340
页数:8
相关论文
共 27 条
[21]   Radiation damage in room-temperature data acquisition with the PILATUS 6M pixel detector [J].
Rajendran, Chitra ;
Dworkowski, Florian S. N. ;
Wang, Meitian ;
Schulze-Briese, Clemens .
JOURNAL OF SYNCHROTRON RADIATION, 2011, 18 :318-328
[22]  
Sauter C., 2012, INT TABLES CRYSTALLO, VF, P99, DOI DOI 10.1107/97809553602060000812
[23]   From macrofluidics to microfluidics for the crystallization of biological macromolecules [J].
Sauter, Claude ;
Dhouib, Kaouthar ;
Lorber, Bernard .
CRYSTAL GROWTH & DESIGN, 2007, 7 (11) :2247-2250
[24]   A short history of SHELX [J].
Sheldrick, George M. .
ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2008, 64 :112-122
[25]   From screen to structure with a harvestable microfluidic device [J].
Stojanoff, Vivian ;
Jakoncic, Jean ;
Oren, Deena A. ;
Nagarajan, V. ;
Poulsen, Jens-Christian Navarro ;
Adams-Cioaba, Melanie A. ;
Bergfors, Terese ;
Sommer, Morten O. A. .
ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY COMMUNICATIONS, 2011, 67 :971-975
[26]   Microfabrication of an electromagnetic power relay using SU-8 based UV-LIGA technology [J].
Williams, JD ;
Wang, W .
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS, 2004, 10 (10) :699-705
[27]   Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets [J].
Zheng, B ;
Roach, LS ;
Ismagilov, RF .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (37) :11170-11171