Anisotropic elliptic equations with general growth in the gradient and Hardy-type potentials

被引:14
作者
Della Pietra, Francesco [1 ]
Gavitone, Nunzia [2 ]
机构
[1] Univ Molise, Dipartimento Biosci & Terr, Div Fis Informat & Matemat, I-86039 Termoli, CB, Italy
[2] Univ Naples Federico II, Dipartimento Matemat & Applicaz R Caccioppoli, I-80126 Naples, Italy
关键词
Nonlinear elliptic boundary value problems; Hardy inequalities; A priori estimates; Convex symmetrization; LAPLACE EIGENVALUE PROBLEM; NATURAL GROWTH; EXISTENCE; SYMMETRIZATION; TERM;
D O I
10.1016/j.jde.2013.07.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give existence and regularity results for the solutions of problems whose prototype is { -Qv = beta(vertical bar v vertical bar)H(Dv)(q) + lambda/H-o(x)(p) vertical bar v vertical bar(p-2)v + f(x) in Omega, v = 0 on partial derivative Omega, with Omega bounded domain of R-N, N >= 2, 0 < p - 1 < q <= p < N, beta is a nonnegative continuous function and lambda >= 0. Moreover, H is a general norm of R-N, H-0 is its polar and Qv := Sigma(N)(i=1) partial derivative/partial derivative x(i)(H(Dv)Hp-1 xi(i)(Dv)). (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:3788 / 3810
页数:23
相关论文
共 44 条
[1]   Some remarks on elliptic problems with critical growth in the gradient [J].
Abdellaoui, B ;
Dall'Aglio, A ;
Peral, I .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 222 (01) :21-62
[2]  
Abdellaoui B., 2007, ANN SC NORM SUPE S 5, VVI, P1
[3]   Elliptic problems with a Hardy potential and critical growth in the gradient: Non-resonance and blow-up results [J].
Abdellaoui, Boumediene ;
Peral, Ireneo ;
Primo, Ana .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 239 (02) :386-416
[4]   Convex symmetrization and applications [J].
Alvino, A ;
Ferone, V ;
Trombetti, G ;
Lions, PL .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (02) :275-293
[5]  
Alvino A., 1977, B UNIONE MAT ITAL, V14, P148
[6]   A NOTION OF TOTAL VARIATION DEPENDING ON A METRIC WITH DISCONTINUOUS COEFFICIENTS [J].
AMAR, M ;
BELLETTINI, G .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1994, 11 (01) :91-133
[7]  
Belloni M, 2006, J EUR MATH SOC, V8, P123
[8]   Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators [J].
Belloni, M ;
Ferone, V ;
Kawohl, B .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (05) :771-783
[9]  
Benilan P., 1995, ANN SCUOLA NORM-SCI, V22, P241
[10]  
Bennett C., 1988, PURE APPL MATH, V129