Siderophile element constraints on the formation of metal in the metal-rich chondrites Bencubbin, Weatherford, and Gujba

被引:139
作者
Campbell, AJ
Humayun, M
Weisberg, MK
机构
[1] Univ Chicago, Dept Geophys Sci, Chicago, IL 60637 USA
[2] CUNY, Kingsborough Coll, Dept Phys Sci, Brooklyn, NY 11235 USA
基金
美国国家航空航天局;
关键词
D O I
10.1016/S0016-7037(01)00794-3
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Laser ablation inductively coupled plasma mass spectrometry was used to measure abundances of P, Cr, Fe, Co, Ni, Cu, Ga, Ge, As, Mo, Ru, Rh, Pd, Sri, Sb, W, Re, Os, Ir, Pt, and Au in metal grains in the Bencubbin-like chondrites Bencubbin, Weatherford, and Gujba to determine the origin of large metal aggregates in bencubbinites. A strong volatility-controlled signature is observed among the metal grains. The refractory siderophiles Ru, Rh, Re, Os, Ir, and Pt are unfractionated from one another, and are present in approximately chondritic relative abundances. The less refractory elements Fe, Co, Ni, Pd, and Au are fractionated from the refractory siderophiles, with a chondritic Ni/Co ratio and a higher than chondritic Pd/Fe ratio. The moderately volatile siderophile elements Ga, Ge, As, Sri, and Sb are depleted in the metal, relative to chondritic abundances, by up to 3 orders of magnitude. The trace siderophile element data are inconsistent with the following proposed origins of Bencubbin-Weatherford-Gujba metal: (1) condensation from the canonical solar nebula, (2) oxidation of an initially chondritic metal composition, and (3) equilibration with a S-rich partial melt. A condensation model for metal-enriched (x10(7) CI) gas is developed. Formation by condensation or evaporation in such a high-density, metal-enriched gas is consistent with the trace element measurements. The proposed model for generating such a gas is protoplanetary impact involving a metal-rich body. Copyright (C) 2002 Elsevier Science Ltd.
引用
收藏
页码:647 / 660
页数:14
相关论文
共 63 条
[1]   ABUNDANCES OF THE ELEMENTS - METEORITIC AND SOLAR [J].
ANDERS, E ;
GREVESSE, N .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1989, 53 (01) :197-214
[2]  
BOGARD D, 1967, EARTH PLANET SC LETT, V3, P275
[3]   3940ARAR AGE AND PETROLOGY OF CHICO - LARGE-SCALE IMPACT MELTING ON THE L-CHONDRITE PARENT BODY [J].
BOGARD, DD ;
GARRISON, DH ;
NORMAN, M ;
SCOTT, ERD ;
KEIL, K .
GEOCHIMICA ET COSMOCHIMICA ACTA, 1995, 59 (07) :1383-1399
[4]   Chronology and petrology of silicates from IIE iron meteorites: Evidence of a complex parent body evolution [J].
Bogard, DD ;
Garrison, DH ;
McCoy, TJ .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2000, 64 (12) :2133-2154
[5]  
Boss A. P., 1996, CHONDRULES PROTOPLAN, P257
[6]   VELOCITY DISTRIBUTIONS AMONG COLLIDING ASTEROIDS [J].
BOTTKE, WF ;
NOLAN, MC ;
GREENBERG, R ;
KOLVOORD, RA .
ICARUS, 1994, 107 (02) :255-268
[7]  
Buchwald V.F., 1975, HDB IRON METEORITES
[8]   EVIDENCE FOR FORMATION OF AN IRON METEORITE AT 3.8 BY 109 YEARS [J].
BURNETT, DS ;
WASSERBU.GJ .
EARTH AND PLANETARY SCIENCE LETTERS, 1967, 2 (03) :137-&
[9]  
Campbell AJ, 2000, METEORIT PLANET SCI, V35, pA38
[10]   Origin of zoned metal grains in the QUE94411 chondrite [J].
Campbell, AJ ;
Humayun, M ;
Meibom, A ;
Krot, AN ;
Keil, K .
GEOCHIMICA ET COSMOCHIMICA ACTA, 2001, 65 (01) :163-180