Dark and singular optical solitons with spatio-temporal dispersion using modified simple equation method

被引:51
作者
El-Borai, M. M. [1 ]
El-Owaidy, H. M. [2 ]
Ahmed, Hamdy M. [3 ]
Arnous, Ahmed H. [3 ]
Moshokoa, Seithuti [4 ]
Biswas, Anjan [4 ,5 ]
Belic, Milivoj [6 ]
机构
[1] Univ Alexandria, Fac Sci, Dept Math, Alexandria, Egypt
[2] Al Azhar Univ, Fac Sci, Dept Math, Cairo, Egypt
[3] Higher Inst Engn, Dept Engn Math & Phys, Cairo, Egypt
[4] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
[5] King Abdulaziz Univ, Dept Math, Fac Sci, Jeddah 80203, Saudi Arabia
[6] Texas A&M Univ Qatar, Sci Program, POB 23874, Doha, Qatar
来源
OPTIK | 2017年 / 130卷
关键词
Solitons; Spatio-temporal dispersion; Modified simple equation method; BISWAS-MILOVIC EQUATION;
D O I
10.1016/j.ijleo.2016.10.105
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper obtains optical soliton solutions to the governing nonlinear Schrodinger's equation that is studied with spatio-temporal dispersion. The integration algorithm that is employed in this paper is the modified simple equation method. This leads to dark and singular soliton solutions that are valuable in the field of optoelectronics. The soliton solutions appear with all necessary constraints that are deemed necessary for them to exist. There are four types of nonlinear fibers studied in this paper. They are Kerr law, power law, parabolic law and the dual-power law. (C) 2016 Elsevier GmbH. All rights reserved.
引用
收藏
页码:324 / 331
页数:8
相关论文
共 11 条
[1]  
Arnous AH, 2015, OPTOELECTRON ADV MAT, V9, P1214
[2]   Explicit bright and dark solitons for the variable coefficient Biswas-Milovic equation with competing nonlinearity [J].
Das, Amiya ;
Ganguly, Asish .
OPTIK, 2016, 127 (20) :8732-8750
[3]   Darboux transformation for an integrable generalization of the nonlinear Schrodinger equation [J].
Geng, Xianguo ;
Lv, Yanyan .
NONLINEAR DYNAMICS, 2012, 69 (04) :1621-1630
[4]   Optical soliton solutions of the pulse propagation generalized equation in parabolic-law media with space-modulated coefficients [J].
Inc, Mustafa ;
Kilic, Bulent ;
Baleanu, Dumitru .
OPTIK, 2016, 127 (03) :1056-1058
[5]   Coupled Higgs field equation and Hamiltonian amplitude equation: Lie classical approach and (G′/G)-expansion method [J].
Kumar, Sachin ;
Singh, K. ;
Gupta, R. K. .
PRAMANA-JOURNAL OF PHYSICS, 2012, 79 (01) :41-60
[6]   Self-similar soliton-like solution for coupled higher-order nonlinear Schrodinger equation with variable coefficients [J].
Li, Hongjuan ;
Tian, Jinping ;
Yang, Rongcao ;
Song, Lijun .
OPTIK, 2015, 126 (11-12) :1191-1195
[7]   Optical Solitons in Photonic Nano Waveguides with an Improved Nonlinear Schrodinger's Equation [J].
Savescu, Michelle ;
Khan, Kaisar R. ;
Naruka, Preeti ;
Jafari, Hossein ;
Moraru, Luminita ;
Biswas, Anjan .
JOURNAL OF COMPUTATIONAL AND THEORETICAL NANOSCIENCE, 2013, 10 (05) :1182-1191
[8]   Optical Soliton Perturbation with Improved Nonlinear Schrodinger's Equation in Nano Fibers [J].
Savescu, Michelle ;
Khan, Kaisar R. ;
Kohl, Russell W. ;
Moraru, Luminita ;
Yildirim, Ahmet ;
Biswas, Anjan .
JOURNAL OF NANOELECTRONICS AND OPTOELECTRONICS, 2013, 8 (02) :208-220
[9]   Exact solutions of the nonlinear ZK-MEW and the Potential YTSF equations using the modified simple equation method [J].
Zayed, E. M. E. ;
Arnous, A. H. .
NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 :2044-2048
[10]  
Zayed E. M. E., 2013, SCI RES ESSAYS, V8, P1973