The Microstructural, Textural, and Mechanical Properties of Extruded and Equal Channel Angularly Pressed Mg-Li-Zn Alloys

被引:38
作者
Karami, M. [1 ]
Mahmudi, R. [1 ]
机构
[1] Univ Tehran, Coll Engn, Sch Met & Mat Engn, Tehran, Iran
来源
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE | 2013年 / 44A卷 / 08期
基金
美国国家科学基金会;
关键词
SEVERE PLASTIC-DEFORMATION; AZ31 MAGNESIUM ALLOY; FINITE-ELEMENT-ANALYSIS; GRAIN-REFINEMENT; ENHANCED DUCTILITY; TENSILE PROPERTIES; ALUMINUM-ALLOYS; BEHAVIOR; EXTRUSION; ECAP;
D O I
10.1007/s11661-013-1699-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The microstructural and textural evolution of the Mg-6Li-1Zn (LZ61), Mg-8Li-1Zn (LZ81), and Mg-12Li-1Zn (LZ121) alloys were investigated in the as-extruded condition and after being equal channel angularly pressed (ECAPed) for one, two, and four passes. The shear punch testing technique was employed to evaluate the room-temperature mechanical properties of the extruded and ECAPed materials. Microstructural analysis revealed that the grain refinement in both LZ61 and LZ121 alloys could be achieved after multipass ECAP through the continuous dynamic recovery and recrystallization process. For the LZ81 alloy, however, the occurrence of Li loss in the four passes of ECAP condition partly offsets the grain refining effect of the ECAP process by increasing grain size and volume fraction of the alpha phase. Textural studies in both LZ61 and LZ81 alloys indicated that the developed fiber texture after extrusion could be replaced by a typical ECAP texture, where the basal planes are mainly inclined about 45 deg to the extrusion axis. The increased volume fraction of the beta phase in LZ81 significantly affected the alpha-phase texture by decreasing the intensity of the maximum orientations of the basal and prismatic planes in all deformation conditions, compared with the LZ61 alloy. It was also observed that the abnormal grain growth might be promoted by the strong texture developed in the extruded LZ121 alloy. This texture became more randomized when the number of ECAP passes increased. The SPT results showed that the shear yield stress, ultimate shear strength and normalized displacement in all studied alloys were improved through the grain refinement strengthening caused by ECAP. It was also established that increasing Li content decreased the shear strength and enhanced the shear elongation in all deformation conditions.
引用
收藏
页码:3934 / 3946
页数:13
相关论文
共 50 条
[1]   Texture evolution of five wrought magnesium alloys during route A equal channel angular extrusion: Experiments and simulations [J].
Agnew, SR ;
Mehrotra, P ;
Lillo, TM ;
Stoica, GM ;
Liaw, PK .
ACTA MATERIALIA, 2005, 53 (11) :3135-3146
[2]   Enhanced ductility in strongly textured magnesium produced by equal channel angular processing [J].
Agnew, SR ;
Horton, JA ;
Lillo, TM ;
Brown, DW .
SCRIPTA MATERIALIA, 2004, 50 (03) :377-381
[3]   Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y [J].
Agnew, SR ;
Yoo, MH ;
Tomé, CN .
ACTA MATERIALIA, 2001, 49 (20) :4277-4289
[4]   Evaluating high-temperature mechanical behavior of cast Mg-4Zn-xSb magnesium alloys by shear punch testing [J].
Alizadeh, R. ;
Mahmudi, R. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (16-17) :3975-3983
[5]   Superplasticity, dynamic grain growth and deformation mechanism in ultra-light two-phase magnesium-lithium alloys [J].
Cao, F. R. ;
Ding, H. ;
Li, Y. L. ;
Zhou, G. ;
Cui, J. Z. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2010, 527 (09) :2335-2341
[6]   Mechanical properties and microstructures of various Mg-Li alloys [J].
Chang, Tien-Chan ;
Wang, Jian-Yih ;
Chu, Chun-Len ;
Lee, Shyong .
MATERIALS LETTERS, 2006, 60 (27) :3272-3276
[7]   Effects of Processing Parameters on the Grain Refinement of Magnesium Alloy by Equal-Channel Angular Extrusion [J].
Ding, S. X. ;
Chang, C. P. ;
Kao, P. W. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2009, 40A (02) :415-425
[8]   Deformation behaviour of Mg-Li-Al alloys [J].
Drozd, Z ;
Trojanová, Z ;
Kúdela, S .
JOURNAL OF ALLOYS AND COMPOUNDS, 2004, 378 (1-2) :192-195
[9]   Grain refinement and mechanical behavior of a magnesium alloy processed by ECAP [J].
Figueiredo, Roberto B. ;
Langdon, Terence G. .
JOURNAL OF MATERIALS SCIENCE, 2010, 45 (17) :4827-4836
[10]  
Fujitani W., 1995, Journal of Japan Institute of Light Metals, V45, P333, DOI 10.2464/jilm.45.333