Stochastic volatility model with filtering

被引:9
作者
Elliott, RJ [1 ]
Miao, H [1 ]
机构
[1] Univ Calgary, Haskayne Sch Business, Calgary, AB T2N 1N4, Canada
关键词
EM algorithm; filtering; Markov switching; Stochastic volatility;
D O I
10.1080/07362990600629389
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize the stochastic volatility model by allowing the volatility to follow different dynamics in different states of the world. The dynamics of the "states of the world" are represented by a Markov chain. We estimate all the parameters by using the filtering and the EM algorithms. Closed form estimates for all parameters are derived in this paper. These estimates can be updated using new information as it arrives.
引用
收藏
页码:661 / 683
页数:23
相关论文
共 12 条
[1]  
Aggoun L., 2004, MEASURE THEORY FILTE
[2]  
[Anonymous], [No title captured], DOI DOI 10.2307/2328253
[3]  
Elliott R. J., 1982, Stochastic Calculus and Applications
[4]   Drift and volatility estimation in discrete time [J].
Elliott, RJ ;
Hunter, WC ;
Jamieson, BM .
JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 1998, 22 (02) :209-218
[5]  
Elliott RJ, 2002, IEEE DECIS CONTR P, P398, DOI 10.1109/CDC.2002.1184527
[6]  
Elliott RJ, 1994, HIDDEN MARKOV MODELS
[7]   AUTOREGRESSIVE CONDITIONAL HETEROSCEDASTICITY WITH ESTIMATES OF THE VARIANCE OF UNITED-KINGDOM INFLATION [J].
ENGLE, RF .
ECONOMETRICA, 1982, 50 (04) :987-1007
[10]  
MIKE KP, 1998, J BUSINESS EC STAT, V2, P244