Persistent currents in a bosonic mixture in the ring geometry

被引:32
作者
Anoshkin, K. [1 ]
Wu, Z. [1 ]
Zaremba, E. [1 ]
机构
[1] Queens Univ, Dept Phys Engn Phys & Astron, Kingston, ON K7L 3N6, Canada
来源
PHYSICAL REVIEW A | 2013年 / 88卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
Compendex;
D O I
10.1103/PhysRevA.88.013609
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper we analyze the possibility of persistent currents of a two-species bosonic mixture in the one-dimensional ring geometry. We extend the arguments used by F. Bloch [Phys. Rev. A 7, 2187 (1973)] to obtain a criterion for the stability of persistent currents for the two-species system. If the mass ratio of the two species is a rational number, persistent currents can be stable at multiples of a certain total angular momenta. We show that the Bloch criterion can also be viewed as a Landau criterion involving the elementary excitations of the system. Our analysis reveals that persistent currents at higher angular momenta are more stable for the two-species system than previously thought.
引用
收藏
页数:14
相关论文
共 16 条
[1]   Two stages in the evolution of binary alkali Bose-Einstein condensate mixtures towards phase segregation [J].
Ao, P ;
Chui, ST .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2000, 33 (03) :535-544
[2]   SUPERFLUIDITY IN A RING [J].
BLOCH, F .
PHYSICAL REVIEW A, 1973, 7 (06) :2187-2191
[3]   Stationary solutions of the one-dimensional nonlinear Schrodinger equation. I. Case of repulsive nonlinearity [J].
Carr, LD ;
Clark, CW ;
Reinhardt, WP .
PHYSICAL REVIEW A, 2000, 62 (06) :063610-063611
[4]   SOLITONS IN A ONE-DIMENSIONAL BOSE SYSTEM WITH THE REPULSIVE DELTA-FUNCTION INTERACTION [J].
ISHIKAWA, M ;
TAKAYAMA, H .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1980, 49 (04) :1242-1246
[5]   Metastable quantum phase transitions in a periodic one-dimensional Bose gas. II. Many-body theory [J].
Kanamoto, R. ;
Carr, L. D. ;
Ueda, M. .
PHYSICAL REVIEW A, 2010, 81 (02)
[6]   Metastable quantum phase transitions in a periodic one-dimensional Bose gas: Mean-field and Bogoliubov analyses [J].
Kanamoto, R. ;
Carr, L. D. ;
Ueda, M. .
PHYSICAL REVIEW A, 2009, 79 (06)
[7]  
Lifshitz E.M., 1980, Statistical Physics part 2
[8]   Yrast spectra of weakly interacting Bose-Einstein condensates [J].
Mottelson, B .
PHYSICAL REVIEW LETTERS, 1999, 83 (14) :2695-2698
[9]   Quantized supercurrent decay in an annular Bose-Einstein condensate [J].
Moulder, Stuart ;
Beattie, Scott ;
Smith, Robert P. ;
Tammuz, Naaman ;
Hadzibabic, Zoran .
PHYSICAL REVIEW A, 2012, 86 (01)
[10]  
Pethick CJ, 2008, BOSE-EINSTEIN CONDENSATION IN DILUTE GASES, P1