Persistent currents in a bosonic mixture in the ring geometry

被引:31
作者
Anoshkin, K. [1 ]
Wu, Z. [1 ]
Zaremba, E. [1 ]
机构
[1] Queens Univ, Dept Phys Engn Phys & Astron, Kingston, ON K7L 3N6, Canada
来源
PHYSICAL REVIEW A | 2013年 / 88卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
Compendex;
D O I
10.1103/PhysRevA.88.013609
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper we analyze the possibility of persistent currents of a two-species bosonic mixture in the one-dimensional ring geometry. We extend the arguments used by F. Bloch [Phys. Rev. A 7, 2187 (1973)] to obtain a criterion for the stability of persistent currents for the two-species system. If the mass ratio of the two species is a rational number, persistent currents can be stable at multiples of a certain total angular momenta. We show that the Bloch criterion can also be viewed as a Landau criterion involving the elementary excitations of the system. Our analysis reveals that persistent currents at higher angular momenta are more stable for the two-species system than previously thought.
引用
收藏
页数:14
相关论文
共 16 条
  • [1] Two stages in the evolution of binary alkali Bose-Einstein condensate mixtures towards phase segregation
    Ao, P
    Chui, ST
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2000, 33 (03) : 535 - 544
  • [2] SUPERFLUIDITY IN A RING
    BLOCH, F
    [J]. PHYSICAL REVIEW A, 1973, 7 (06): : 2187 - 2191
  • [3] Stationary solutions of the one-dimensional nonlinear Schrodinger equation. I. Case of repulsive nonlinearity
    Carr, LD
    Clark, CW
    Reinhardt, WP
    [J]. PHYSICAL REVIEW A, 2000, 62 (06): : 063610 - 063611
  • [4] SOLITONS IN A ONE-DIMENSIONAL BOSE SYSTEM WITH THE REPULSIVE DELTA-FUNCTION INTERACTION
    ISHIKAWA, M
    TAKAYAMA, H
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1980, 49 (04) : 1242 - 1246
  • [5] Metastable quantum phase transitions in a periodic one-dimensional Bose gas. II. Many-body theory
    Kanamoto, R.
    Carr, L. D.
    Ueda, M.
    [J]. PHYSICAL REVIEW A, 2010, 81 (02):
  • [6] Metastable quantum phase transitions in a periodic one-dimensional Bose gas: Mean-field and Bogoliubov analyses
    Kanamoto, R.
    Carr, L. D.
    Ueda, M.
    [J]. PHYSICAL REVIEW A, 2009, 79 (06):
  • [7] Lifshitz E.M., 1980, Statistical Physics part 2
  • [8] Yrast spectra of weakly interacting Bose-Einstein condensates
    Mottelson, B
    [J]. PHYSICAL REVIEW LETTERS, 1999, 83 (14) : 2695 - 2698
  • [9] Quantized supercurrent decay in an annular Bose-Einstein condensate
    Moulder, Stuart
    Beattie, Scott
    Smith, Robert P.
    Tammuz, Naaman
    Hadzibabic, Zoran
    [J]. PHYSICAL REVIEW A, 2012, 86 (01):
  • [10] Pethick CJ, 2008, BOSE-EINSTEIN CONDENSATION IN DILUTE GASES, P1