Interval Finite Element Approach for Modal Analysis of Linear Elastic Structures Under Uncertainty

被引:0
|
作者
Xiao, Naijia [1 ]
Fedele, Francesco [2 ,3 ]
Muhanna, Rafi [1 ]
机构
[1] Georgia Inst Technol, Sch Civil & Environm Engn, Mason Bldg 4132,790 Atlantic Dr NW, Atlanta, GA 30308 USA
[2] Georgia Inst Technol, Sch Civil & Environm Engn, Technol Sq Res Bldg 415,85 5th St NW, Atlanta, GA 30308 USA
[3] Georgia Inst Technol, Sch Elect & Comp Engn, Technol Sq Res Bldg 415,85 5th St NW, Atlanta, GA 30308 USA
来源
MODEL VALIDATION AND UNCERTAINTY QUANTIFICATION, VOL 3 | 2016年
关键词
Interval; Finite element method; Modal analysis; Iterative enclosure method; Matrix decomposition; Generalized eigenvalue problem; MECHANICS; FREQUENCIES; PARAMETERS; MODELS;
D O I
10.1007/978-3-319-29754-5_13
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
We present a new Interval Finite Element (IFEM) approach for modal analysis of linear elastic structures with uncertain geometric and material properties. Uncertain parameters are modeled as intervals. Guaranteed interval lower and upper bounds for natural frequencies and modal shapes are attained using a new decomposition strategy of the IFEM matrices that drastically reduces overestimation due to interval dependency. The associated interval generalized eigenvalue problem is solved efficiently by way of a new variant of the iterative enclosure method. Several numerical examples show the accuracy and efficiency of the proposed method.
引用
收藏
页码:143 / 150
页数:8
相关论文
共 50 条
  • [31] Finite element interval analysis of external loads identified by displacement input with uncertainty
    Univ of Tokyo, Tokyo, Japan
    Comput Methods Appl Mech Eng, 1-4 (63-72):
  • [32] Finite Element Analysis of the Uncertainty of Physical Response of Acoustic Metamaterials with Interval Parameters
    Wu, Y.
    Lin, X. Y.
    Jiang, H. X.
    Cheng, A. G.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2020, 17 (08)
  • [33] Finite element interval analysis of external loads identified by displacement input with uncertainty
    Nakagiri, S
    Suzuki, K
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 168 (1-4) : 63 - 72
  • [34] Mathematical programming approach for uncertain linear elastic analysis of functionally graded porous structures with interval parameters
    Wu, Di
    Liu, Airong
    Huang, Yonghui
    Huang, Youqing
    Pi, Yonglin
    Gao, Wei
    COMPOSITES PART B-ENGINEERING, 2018, 152 : 282 - 291
  • [35] Interval and Fuzzy Finite Element Analysis of mechanical structures with uncertain parameters
    De Gersem, H.
    Moens, D.
    Desmet, W.
    Vandepitte, D.
    Proceedings of ISMA 2004: International Conference on Noise and Vibration Engineering, Vols 1-8, 2005, : 3009 - 3021
  • [36] An interval finite element method for the analysis of structures with spatially varying uncertainties
    Sofi, Alba
    Romeo, Eugenia
    Barrera, Olga
    Cocks, Alan
    ADVANCES IN ENGINEERING SOFTWARE, 2019, 128 (1-19) : 1 - 19
  • [37] A spectral approach for fuzzy uncertainty propagation in finite element analysis
    Adhikari, S.
    Khodaparast, H. Haddad
    FUZZY SETS AND SYSTEMS, 2014, 243 : 1 - 24
  • [38] Interval finite element method for beam structures
    Chen, SH
    Yang, XW
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 2000, 34 (01) : 75 - 88
  • [39] A new approach to the analysis of static systems under interval uncertainty
    Shary, SP
    SCIENTIFIC COMPUTING AND VALIDATED NUMERICS, 1996, 90 : 118 - 132
  • [40] Modal analysis of a structure in a compressible fluid using a finite element boundary element approach
    McCollum, MD
    Siders, CM
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1996, 99 (04): : 1949 - 1957