ROBUST PRECONDITIONING FOR STOCHASTIC GALERKIN FORMULATIONS OF PARAMETER-DEPENDENT NEARLY INCOMPRESSIBLE ELASTICITY EQUATIONS

被引:7
|
作者
Khan, Arbaz [1 ]
Powell, Catherine E. [1 ]
Silvester, David J. [1 ]
机构
[1] Univ Manchester, Sch Math, Manchester M13 9PL, Lancs, England
基金
英国工程与自然科学研究理事会;
关键词
uncertain material parameters; linear elasticity; mixed approximation; stochastic Galerkin finite element method; preconditioning; APPROXIMATIONS;
D O I
10.1137/18M117385X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the nearly incompressible linear elasticity problem with an uncertain spatially varying Young's modulus. The uncertainty is modeled with a finite set of parameters with prescribed probability distribution. We introduce a novel three-field mixed variational formulation of the PDE model and discuss its approximation by stochastic Galerkin mixed finite element techniques. First, we establish the well-posedness of the proposed variational formulation and the associated finite-dimensional approximation. Second, we focus on the efficient solution of the associated large and indefinite linear system of equations. A new preconditioner is introduced for use with the minimal residual method. Eigenvalue bounds for the preconditioned system are established and shown to be independent of the discretization parameters and the Poisson ratio. The S-IFISS software used for computation is available online.
引用
收藏
页码:A402 / A421
页数:20
相关论文
共 16 条
  • [1] ROBUST A POSTERIORI ERROR ESTIMATION FOR PARAMETER-DEPENDENT LINEAR ELASTICITY EQUATIONS
    Khan, Arbaz
    Bespalov, Alex
    Powell, Catherine E.
    Silvester, David J.
    MATHEMATICS OF COMPUTATION, 2021, 90 (328) : 613 - 636
  • [2] Parameter-free preconditioning for nearly-incompressible linear elasticity
    Adler, James H.
    Hu, Xiaozhe
    Li, Yuwen
    Zikatanov, Ludmil T.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2024, 154 : 39 - 44
  • [3] INTERPOLATION OF INVERSE OPERATORS FOR PRECONDITIONING PARAMETER-DEPENDENT EQUATIONS
    Zahm, Olivier
    Nouy, Anthony
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (02) : A1044 - A1074
  • [4] Gradient Robust Mixed Methods for Nearly Incompressible Elasticity
    Seshadri R. Basava
    Winnifried Wollner
    Journal of Scientific Computing, 2023, 95
  • [5] Gradient Robust Mixed Methods for Nearly Incompressible Elasticity
    Basava, Seshadri R. R.
    Wollner, Winnifried
    JOURNAL OF SCIENTIFIC COMPUTING, 2023, 95 (03)
  • [6] Robust multigrid methods for nearly incompressible elasticity using macro elements
    Farrell, Patrick E.
    Mitchell, Lawrence
    Scott, L. Ridgway
    Wechsung, Florian
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2022, 42 (04) : 3306 - 3329
  • [7] Robust a posteriori error estimators for mixed approximation of nearly incompressible elasticity
    Khan, Arbaz
    Powell, Catherine E.
    Silvester, David J.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2019, 119 (01) : 18 - 37
  • [8] An hp-adaptive mixed discontinuous Galerkin FEM for nearly incompressible linear elasticity
    Houston, Paul
    Schotzau, Dominik
    Wihler, Thomas P.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2006, 195 (25-28) : 3224 - 3246
  • [9] A locking-free discontinuous Galerkin method for linear elasticity in locally nearly incompressible heterogeneous media
    Di Pietro, Daniele A.
    Nicaise, Serge
    APPLIED NUMERICAL MATHEMATICS, 2013, 63 : 105 - 116
  • [10] Preconditioning Methods for the Penalty Function FEM Discretizations of 3D Nearly Incompressible Elasticity Problems
    Xiao, Yingxiong
    Li, Zhenyou
    Zhou, Lei
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2016, 13 (05)