Singular manifold, auto-Backlund transformations and symbolic-computation steps with solitons for an extended three-coupled Korteweg-de Vries system

被引:11
作者
Gao, Xin-Yi
Guo, Yong-Jiang [1 ]
Shan, Wen-Rui [1 ]
Zhou, Tian-Yu
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Extended three-coupled Korteweg-de Vries system; noncharacteristic movable singular manifold; symbolic computation; Backlund transformations; solitons; KADOMTSEV-PETVIASHVILI EQUATION; COUPLED KDV EQUATION; SIMILARITY REDUCTIONS; WAVE INTERACTION; SYMMETRY;
D O I
10.1142/S0219887822502292
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Korteweg-de Vries (KdV)-type models are frequently seen during the investigations on the optical fibers, cosmic plasmas, planetary oceans and atmospheres. In this paper, for an extended three-coupled KdV system, noncharacteristic movable singular manifold and symbolic computation help us bring about four sets of the auto-Backlund transformations with some solitons. All of our results rely on the coefficients in that system.
引用
收藏
页数:15
相关论文
共 88 条
  • [1] Ablowitz M. J., 1991, Solitons, Nonlinear Evolution Equations and Inverse Scattering, DOI 10.1017/CBO9780511623998
  • [2] Numerical Solutions of Korteweg-de Vries and Korteweg-de Vries-Burger's Equations in a Bernstein Polynomial Basis
    Ahmed, H. M.
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2019, 16 (04)
  • [3] A reliable technique to study nonlinear time-fractional coupled Korteweg-de Vries equations
    Akinyemi, Lanre
    Iyiola, Olaniyi S.
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [5] 1-Soliton solution of the coupled KdV equation and Gear-Grimshaw model
    Biswas, Anjan
    Ismail, M. S.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 216 (12) : 3662 - 3670
  • [6] Alfven solitons and generalized Darboux transformation for a variable-coefficient derivative nonlinear Schrodinger equation in an inhomogeneous plasma
    Chen, Su -Su
    Tian, Bo
    Qu, Qi-Xing
    Li, He
    Sun, Yan
    Du, Xia-Xia
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 148
  • [7] Bilinear form, soliton, breather, hybrid and periodic-wave solutions for a (3+1)-dimensional Korteweg-de Vries equation in a fluid
    Cheng, Chong-Dong
    Tian, Bo
    Zhang, Chen-Rong
    Zhao, Xin
    [J]. NONLINEAR DYNAMICS, 2021, 105 (03) : 2525 - 2538
  • [8] Debnath L, 2012, NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS FOR SCIENTISTS AND ENGINEERS, THIRD EDITION, P1, DOI 10.1007/978-0-8176-8265-1
  • [9] Three-wave resonant interactions: dark-bright-bright mixed N- and high-order solitons, breathers, and their structures
    Ding, Cui-Cui
    Gao, Yi-Tian
    Yu, Xin
    Liu, Fei-Yan
    Wu, Xi-Hu
    [J]. WAVES IN RANDOM AND COMPLEX MEDIA, 2021, : 3368 - 3380
  • [10] Vector bright soliton interactions of the two-component AB system in a baroclinic fluid
    Ding, Cui-Cui
    Gao, Yi-Tian
    Hu, Lei
    Deng, Gao-Fu
    Zhang, Cai-Yin
    [J]. CHAOS SOLITONS & FRACTALS, 2021, 142