Spatio-Temporal Expanding Distance Asymptotic Framework for Locally Stationary Processes

被引:2
作者
Chu, Tingjin [1 ]
Liu, Jialuo [2 ]
Zhu, Jun [3 ,4 ]
Wang, Haonan [2 ]
机构
[1] Univ Melbourne, Sch Math & Stat, Parkville, Vic 3010, Australia
[2] Colorado State Univ, Dept Stat, Ft Collins, CO 80523 USA
[3] Univ Wisconsin, Dept Stat, Madison, WI 53706 USA
[4] Univ Wisconsin, Dept Entomol, Madison, WI 53706 USA
来源
SANKHYA-SERIES A-MATHEMATICAL STATISTICS AND PROBABILITY | 2022年 / 84卷 / 02期
关键词
Covariance functions; Nonstationary processes; Random fields; Spatial statistics; Spatio-temporal statistics; MAXIMUM-LIKELIHOOD-ESTIMATION; COVARIANCE; SEPARABILITY; MODELS; REGRESSION;
D O I
10.1007/s13171-020-00213-4
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Spatio-temporal data indexed by sampling locations and sampling time points are encountered in many scientific disciplines such as climatology, environmental sciences, and public health. Here, we propose a novel spatio-temporal expanding distance (STED) asymptotic framework for studying the properties of statistical inference for nonstationary spatio-temporal models. In particular, to model spatio-temporal dependence, we develop a new class of locally stationary spatio-temporal covariance functions. The STED asymptotic framework has a fixed spatio-temporal domain for spatio-temporal processes that are globally nonstationary in a rescaled fixed domain and locally stationary in a distance expanding domain. The utility of STED is illustrated by establishing the asymptotic properties of the maximum likelihood estimation for a general class of spatio-temporal covariance functions. A simulation study suggests sound finite-sample properties and the method is applied to a sea-surface temperature dataset.
引用
收藏
页码:689 / 713
页数:25
相关论文
共 41 条
  • [1] A SPECTRAL DOMAIN TEST FOR STATIONARITY OF SPATIO-TEMPORAL DATA
    Bandyopadhyay, Soutir
    Jentsch, Carsten
    Rao, Suhasini Subba
    [J]. JOURNAL OF TIME SERIES ANALYSIS, 2017, 38 (02) : 326 - 351
  • [2] A test for stationarity for irregularly spaced spatial data
    Bandyopadhyay, Soutir
    Rao, Suhasini Subba
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2017, 79 (01) : 95 - 123
  • [3] High dimensional stochastic regression with latent factors, endogeneity and nonlinearity
    Chang, Jinyuan
    Guo, Bin
    Yao, Qiwei
    [J]. JOURNAL OF ECONOMETRICS, 2015, 189 (02) : 297 - 312
  • [4] PENALIZED MAXIMUM LIKELIHOOD ESTIMATION AND VARIABLE SELECTION IN GEOSTATISTICS
    Chu, Tingjin
    Zhu, Jun
    Wang, Haonan
    [J]. ANNALS OF STATISTICS, 2011, 39 (05) : 2607 - 2625
  • [5] Classes of nonseparable, spatio-temporal stationary covariance functions
    Cressie, N
    Huang, HC
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1999, 94 (448) : 1330 - 1340
  • [6] THE ASYMPTOTIC-DISTRIBUTION OF REML ESTIMATORS
    CRESSIE, N
    LAHIRI, SN
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 1993, 45 (02) : 217 - 233
  • [7] Cressie N, 2011, Statistics for Spatio-temporal Data
  • [8] Cressie N, 2018, J AM STAT ASSOC, V113, P152, DOI 10.1080/01621459.2017.1419136
  • [9] Dahlhaus R, 1997, ANN STAT, V25, P1
  • [10] Dahlhaus R, 2012, HANDB STAT, V30, P351, DOI 10.1016/B978-0-444-53858-1.00013-2