Operator-splitting finite element algorithms for computations of high-dimensional parabolic problems

被引:14
作者
Ganesan, Sashikumaar [1 ]
Tobiska, Lutz [2 ]
机构
[1] Indian Inst Sci, Supercomp Educ & Res Ctr, Bangalore 560012, Karnataka, India
[2] Otto von Guericke Univ, Inst Anal & Numer Math, D-39016 Magdeburg, Germany
关键词
Operator-splitting method; Finite element method; Parabolic equations; High-dimensional problems; POPULATION BALANCE; NUMERICAL-SOLUTION; SIMULATION; CRYSTALLIZATION; FLOWS;
D O I
10.1016/j.amc.2012.12.027
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An operator-splitting finite element method for solving high-dimensional parabolic equations is presented. The stability and the error estimates are derived for the proposed numerical scheme. Furthermore, two variants of fully-practical operator-splitting finite element algorithms based on the quadrature points and the nodal points, respectively, are presented. Both the quadrature and the nodal point based operator-splitting algorithms are validated using a three-dimensional (3D) test problem. The numerical results obtained with the full 3D computations and the operator-split 2D + 1D computations are found to be in a good agreement with the analytical solution. Further, the optimal order of convergence is obtained in both variants of the operator-splitting algorithms. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:6182 / 6196
页数:15
相关论文
共 22 条
[1]   Finite element methods of an operator splitting applied to population balance equations [J].
Ahmed, Naveed ;
Matthies, Gunar ;
Tobiska, Lutz .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2011, 236 (06) :1604-1621
[2]  
[Anonymous], 2008, MATH THEORY FINITE E, V105, pA341
[3]  
Bungartz HJ, 2004, ACT NUMERIC, V13, P147, DOI 10.1017/S0962492904000182
[4]   CFD modeling of bubble columns flows: implementation of population balance [J].
Chen, P ;
Sanyal, J ;
Dudukovic, MP .
CHEMICAL ENGINEERING SCIENCE, 2004, 59 (22-23) :5201-5207
[5]   ON THE NUMERICAL INTEGRATION OF D2U-DX2+D2U-DY2=DU-D+ IMPLICIT METHODS [J].
DOUGLAS, J .
JOURNAL OF THE SOCIETY FOR INDUSTRIAL AND APPLIED MATHEMATICS, 1955, 3 (01) :42-65
[6]  
DOUGLAS JJ, 1971, SYNSPADE1970 NUMERIC, P133
[7]   AN OPERATOR-SPLITTING GALERKIN/SUPG FINITE ELEMENT METHOD FOR POPULATION BALANCE EQUATIONS: STABILITY AND CONVERGENCE [J].
Ganesan, Sashikumaar .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (06) :1447-1465
[8]   Applications of operator-splitting methods to the direct numerical simulation of particulate and free-surface flows and to the numerical solution of the two-dimensional elliptic Monge-Ampere equation [J].
Glowinski, R. ;
Dean, E. J. ;
Guidoboni, G. ;
Juarez, L. H. ;
Pan, T. -W. .
JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2008, 25 (01) :1-63
[9]   A sparse grid space-time discretization scheme for parabolic problems [J].
Griebel, M. ;
Oeltz, D. .
COMPUTING, 2007, 81 (01) :1-34
[10]   Space-time approximation with sparse grids [J].
Griebel, Michael ;
Oeltz, Daniel ;
Vassilevski, Panayot .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 28 (02) :701-727