Micron-scale Light Transport Decomposition Using Interferometry

被引:53
|
作者
Gkioulekas, Ioannis [1 ]
Levin, Anat [2 ]
Durand, Fredo [3 ]
Zickler, Todd [1 ]
机构
[1] Harvard Univ, Cambridge, MA 02138 USA
[2] Weizmann Inst Sci, Rehovot, Israel
[3] MIT, Cambridge, MA 02139 USA
来源
ACM TRANSACTIONS ON GRAPHICS | 2015年 / 34卷 / 04期
基金
美国国家科学基金会;
关键词
light transport; interference; wave optics;
D O I
10.1145/2766928
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We present a computational imaging system, inspired by the optical coherence tomography (OCT) framework, that uses interferometry to produce decompositions of light transport in small scenes or volumes. The system decomposes transport according to various attributes of the paths that photons travel through the scene, including where on the source the paths originate, their pathlengths from source to camera through the scene, their wavelength, and their polarization. Since it uses interference, the system can achieve high pathlength resolutions, with the ability to distinguish paths whose lengths differ by as little as ten microns. We describe how to construct and optimize an optical assembly for this technique, and we build a prototype to measure and visualize three-dimensional shape, direct and indirect reflection components, and properties of scattering, refractive/dispersive, and birefringent materials.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Passive Micron-scale Time-of-Flight with Sunlight Interferometry
    Kotwal, Alankar
    Levin, Anat
    Gkioulekas, Ioannis
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 4139 - 4149
  • [2] Light-controlled micron-scale molecular motion
    Samperi, Mario
    Bdiri, Bilel
    Sleet, Charlotte D.
    Markus, Robert
    Mallia, Ajith R.
    Perez-Garcia, Lluisa
    Amabilino, David B.
    NATURE CHEMISTRY, 2021, 13 (12) : 1200 - +
  • [3] Light-controlled micron-scale molecular motion
    Mario Samperi
    Bilel Bdiri
    Charlotte D. Sleet
    Robert Markus
    Ajith R. Mallia
    Lluïsa Pérez-García
    David B. Amabilino
    Nature Chemistry, 2021, 13 : 1200 - 1206
  • [4] Micron-scale Light Structuring via Flat Nanodevices
    Mahmood, Nasir
    Mehmood, Muhammad Qasim
    Kim, Inki
    Jeong, Heongyeong
    Tahir, Farooq Ahmad
    Rho, Junsuk
    METAMATERIALS XI, 2018, 10671
  • [5] Micron-scale imaging using bulk ultrasonics
    Chandran, Loheshwaran
    Syed Akbar Ali, Mohamed Subair
    Bobbs, Bradley
    Dutta, Chandan
    Joseph, J. D.
    Bhattacharya, Enakshi
    Rajagopal, Prabhu
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [6] Sequential self-assembly of micron-scale components with light
    E. Saeedi
    J.R. Etzkorn
    B.A. Parviz
    Journal of Materials Research, 2011, 26 : 268 - 276
  • [7] Sequential self-assembly of micron-scale components with light
    Saeedi, E.
    Etzkorn, J. R.
    Parviz, B. A.
    JOURNAL OF MATERIALS RESEARCH, 2011, 26 (02) : 268 - 276
  • [8] Micron-scale tunability in photonic devices using microfluidics
    Monat, Christelle
    Domachuka, Peter
    Jaouen, Vincent
    Grillet, Christian
    Littler, Ian
    Croning-Golomb, Mark
    Eggleton, Benjamin J.
    Mutzenich, Simon
    Mahmud, Tanveer
    Rosengarten, Gary
    Mitchell, Arnan
    OPTOFLUIDICS, 2006, 6329
  • [9] Micron-scale organization using nanoscale molecular motors
    Ross, Jennifer
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [10] Decomposition of ammonium-perchlorate-encapsulated nanoscale and micron-scale catalyst particles
    Fehlberg, Spencer
    Örnek, Metin
    Manship, Timothy D.
    Son, Steven F.
    1600, AIAA International, 12700 Sunrise Valley Drive, Suite 200Reston, VA, Virginia, Virginia 20191-5807, United States (36): : 862 - 868