Guaranteed Cost Control of Quadratic Time-Delay Systems

被引:0
作者
de Souza, Carlos E. [1 ]
Coutinho, Daniel [2 ]
Barbosa, Karina A. [3 ]
机构
[1] Lab Nacl Comp Cient LNCC MCTIC, Dept Math & Computat Methods, Ave Getulio Vargas 333, BR-25651075 Petropolis, RJ, Brazil
[2] Univ Fed Santa Catarina, Dept Automat & Syst, POB 476, BR-88040900 Florianopolis, SC, Brazil
[3] Univ Santiago Chile, Dept Elect Engn, Ave Ecuador 3519, Santiago, Chile
来源
2017 11TH ASIAN CONTROL CONFERENCE (ASCC) | 2017年
关键词
ATTRACTION; STABILITY; REGION; DESIGN;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper deals with the problem of regional guaranteed cost control design for, possibly open-loop unstable, nonlinear quadratic systems with a delayed state. Control methods based on the Razumikhin and Lyapunov-Krasovskii stability theorems are developed for designing static nonlinear quadratic state feedback controllers that achieve delay-independent regional stability while guaranteeing a quadratic regulator-type performance for any initial function taking value in a region of the state-space inside some polytopic domain. The proposed methods are tailored via a finite set of linear matrix inequalities. A numerical example is presented to illustrate the potentials of the control designs.
引用
收藏
页码:1731 / 1736
页数:6
相关论文
共 17 条
[1]  
Amato F., 2007, 46 IEEE C DEC CONTR, P1699
[2]  
Boyd S., 1994, SIAM STUDIES APPL MA
[3]   L2-gain analysis and control of uncertain nonlinear systems with bounded disturbance inputs [J].
Coutinho, D. F. ;
Fu, M. ;
Trofino, A. ;
Danes, P. .
INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2008, 18 (01) :88-110
[4]   Nonlinear State Feedback Design With a Guaranteed Stability Domain for Locally Stabilizable Unstable Quadratic Systems [J].
Coutinho, Daniel ;
de Souza, Carlos E. .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2012, 59 (02) :360-370
[5]   Delay-dependent robust stability and L2-gain analysis of a class of nonlinear time-delay systems [J].
Coutinho, Daniel F. ;
de Souza, Carlos E. .
AUTOMATICA, 2008, 44 (08) :2006-2018
[6]  
De Leenheer P, 2000, IEEE DECIS CONTR P, P3977, DOI 10.1109/CDC.2000.912336
[7]  
de Souza C. E., 2012, P 10 IFAC WORKSH TIM, P1699
[8]  
DESOUZA CE, 2014, P 19 WORLD C IFAC CA, P10084
[9]  
Hale JK., 1993, Introduction To Functional Differential Equations, V99
[10]   Cross-Term Forwarding for Systems With Time Delay [J].
Jankovic, Mrdjan .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2009, 54 (03) :498-511