New advances in fiber-reinforced composite honeycomb materials

被引:77
|
作者
Wei, XingYu [1 ,2 ]
Xiong, Jian [1 ,2 ]
Wang, Jie [3 ]
Xu, Wu [4 ]
机构
[1] Harbin Inst Technol, Ctr Composite Mat & Struct, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Natl Key Lab Sci & Technol Adv Composites Special, Harbin 150080, Peoples R China
[3] Shanghai Aircraft Design & Res Inst, Shanghai 201210, Peoples R China
[4] Shanghai Jiao Tong Univ, Sch Aeronaut & Astronaut, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
composite; honeycomb materials; sandwich structures; failure mechanism; mechanical property; CONTINUOUS CARBON-FIBER; FAILURE MODE MAPS; MECHANICAL-PROPERTIES; COMPRESSIVE BEHAVIOR; BIOLOGICAL-MATERIALS; SANDWICH PANELS; FREE-VIBRATION; BEAMS; DESIGN; IMPACT;
D O I
10.1007/s11431-020-1650-9
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In sandwich structures, lightweight cellular materials as the core hold the face sheets far away from the neutral axis to maximize the bending performance of the structure. Honeycomb materials as a major type of lightweight cellular materials have been widely applied in various fields, including aerospace, vehicle, marine, architecture and mechanical engineering, due to reliable mechanical properties and excellent designability. Using fiber-reinforced composites is an efficient method to develop ultralight honeycomb materials with superior mechanical behaviors. In recent years, fiber-reinforced composite honeycomb materials possessing lightweight and excellent mechanical performances have attracted noticeable attention to replacing traditional aluminum honeycombs and Nomex honeycombs. Compared to metal, polymer and Nomex paper, fiber-reinforced composites possess various merits, such as high specific stiffness and specific strength, excellent fatigue property, corrosion resistance and high-temperature resistance. Thus, the applications of fiber-reinforced honeycomb material for sandwich core have unlimited potential in hypersonic vehicles, long-range rockets, cargo vessels and protective systems. Although the fact that attention has been rapidly increasing, there is a lack of comprehensive reviews of new advances in the field of fiber-reinforced composite honeycomb materials. In this review, new advances reported by different scientists in the field of fiber-reinforced honeycomb materials have been reviewed and analyzed to provide an in-depth overview and knowledge for beginners in the field of ultra-lightweight and high-performance composite sandwich architectures. The challenges and prospects for the development of fiber-reinforced honeycomb materials have also been presented.
引用
收藏
页码:1348 / 1370
页数:23
相关论文
共 50 条
  • [31] An Application Review of Fiber-Reinforced Geopolymer Composite
    Samal, Sneha
    Blanco, Ignazio
    FIBERS, 2021, 9 (04)
  • [32] BENDING FAILURE OF ARAMID FIBER-REINFORCED COMPOSITE
    BAZHENOV, SL
    COMPOSITES, 1995, 26 (11): : 757 - 765
  • [33] Fiber-reinforced composite cylindrical vessel with lugs
    Mirza, S
    Bryan, A
    Noori, M
    COMPOSITE STRUCTURES, 2001, 53 (02) : 143 - 151
  • [34] Flax fiber-reinforced composite lattice cores: A low-cost and recyclable approach
    Xu, Jun
    Gao, Xiang
    Zhang, Chong
    Yin, Sha
    MATERIALS & DESIGN, 2017, 133 : 444 - 454
  • [35] The Application of Fiber-Reinforced Materials in Disc Repair
    Pei, Bao-Qing
    Li, Hui
    Zhu, Gang
    Li, De-Yu
    Fan, Yu-Bo
    Wu, Shu-Qin
    BIOMED RESEARCH INTERNATIONAL, 2013, 2013
  • [36] A Review on Oil Palm Empty Fruit Bunch Fiber-Reinforced Polymer Composite Materials
    Hassan, Azman
    Salema, Arshad Adam
    Ani, Farid Nasir
    Abu Baker, Aznizam
    POLYMER COMPOSITES, 2010, 31 (12) : 2079 - 2101
  • [37] Carbon fiber-reinforced plastics as implant materials
    Bader, R
    Steinhauser, E
    Rechl, H
    Siebels, W
    Mittelmeier, W
    Gradinger, R
    ORTHOPADE, 2003, 32 (01): : 32 - 40
  • [38] Factorial Study on the Tensile Strength of a Coir Fiber-Reinforced Epoxy Composite
    Romli, Fairuz I.
    Alias, Ahmad Nizam
    Rafie, Azmin Shakrine Mohd
    Majid, Dayang Laila Abang Abdul
    CONFERENCE ON MODELING, IDENTIFICATION AND CONTROL, 2012, 3 : 242 - 247
  • [39] The role of additive manufacturing in the study of carbon fiber-reinforced polymer composite
    Meshram, Sanket Dilip
    Gupta, Shruti
    Kulthe, Manisha
    Kandasubramanian, Balasubramanian
    POLYMER BULLETIN, 2024, 81 (17) : 15469 - 15511
  • [40] Rheological and mechanical properties of fiber-reinforced alkali-activated composite
    Choi, Se-Jin
    Choi, Jeong-Il
    Song, Jin-Kyu
    Lee, Bang Yeon
    CONSTRUCTION AND BUILDING MATERIALS, 2015, 96 : 112 - 118