Core-Shell Composite Fibers for High-Performance Flexible Supercapacitor Electrodes

被引:78
作者
Lu, Xiaoyan [1 ,3 ]
Shen, Chen [1 ,2 ]
Zhang, Zeyang [1 ,3 ]
Barrios, Elizabeth [1 ,2 ]
Zhai, Lei [1 ,2 ,3 ]
机构
[1] Univ Cent Florida, NanoSci Technol Ctr, Orlando, FL 32826 USA
[2] Univ Cent Florida, Dept Chem, Orlando, FL 32816 USA
[3] Univ Cent Florida, Dept Mat Sci & Engn, Orlando, FL 32816 USA
基金
美国国家科学基金会;
关键词
MnO2; polyelectrolyte; polypyrrole; core-shell nanofiber; flexible supercapacitor electrodes; CONDUCTING-POLYMER; ELECTROCHEMICAL PERFORMANCE; MANGANESE-DIOXIDE; TERNARY COMPOSITE; CARBON NANOFIBER; NANO-CABLES; MNO2; ENERGY; CAPACITANCE; OXIDE;
D O I
10.1021/acsami.7b12997
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Core-shell nanofibers containing poly(acrylic acid) (PAA) and manganese oxide nanoparticles as the core and polypyrrole (PPy) as the shell were fabricated through electrospinning the solution of PAA and manganese ions (PAA/Mn2+). The obtained nanofibers were stabilized by Fe3+ through the interaction between Fe3+ ions and carboxylate groups. Subsequent oxidation of Mn2+ by KMnO4 produced uniform manganese dioxide (MnO2) nanoparticles in the fibers. A PPy shell was created on the fibers by immersing the fibers in a pyrrole solution where the Fe3+ ions in the fiber polymerized the pyrrole on the fiber surfaces. In the MnO2@PAA/PPy core-shell composite fibers, MnO2 nanoparticles function as high-capacity materials, while the PPy shell prevents the loss of MnO2 during the charge/discharge process. Such a unique structure makes the composite fibers efficient electrode materials for supercapacitors. The gravimetric specific capacity of the MnO2@PAA/PPy core-shell composite fibers was 564 F/g based on cyclic voltammetry curves at 10 mV/s and 580 F/g based on galvanostatic charge/discharge studies at 5 A/g. The MnO2@PAA/PPy core-shell composite fibers also present stable cycling performance with 100% capacitance retention after 5000 cycles.
引用
收藏
页码:4041 / 4049
页数:9
相关论文
共 61 条
[11]   3D conductive network-based free-standing PANI-RGO-MWNTs hybrid film for high-performance flexible supercapacitor [J].
Fan, Haosen ;
Zhao, Ning ;
Wang, Hao ;
Xu, Jian ;
Pan, Feng .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (31) :12340-12347
[12]  
Ghosh S, 1999, ADV MATER, V11, P1214, DOI 10.1002/(SICI)1521-4095(199910)11:14<1214::AID-ADMA1214>3.0.CO
[13]  
2-3
[14]   Core-Shell Tubular Nanostructured Electrode of Hollow Carbon Nanofiber/Manganese Oxide for Electrochemical Capacitors [J].
Hong, Seungki ;
Lee, Sangkyu ;
Paik, Ungyu .
ELECTROCHIMICA ACTA, 2014, 141 :39-44
[15]   Design and Synthesis of Hierarchical MnO2 Nanospheres/Carbon Nanotubes/Conducting Polymer Ternary Composite for High Performance Electrochemical Electrodes [J].
Hou, Ye ;
Cheng, Yingwen ;
Hobson, Tyler ;
Liu, Jie .
NANO LETTERS, 2010, 10 (07) :2727-2733
[16]   An Overview of the Applications of Graphene-Based Materials in Supercapacitors [J].
Huang, Yi ;
Liang, Jiajie ;
Chen, Yongsheng .
SMALL, 2012, 8 (12) :1805-1834
[17]   Multidimensional MnO2 nanohair-decorated hybrid multichannel carbon nanofiber as an electrode material for high-performance supercapacitors [J].
Jun, Jaemoon ;
Lee, Jun Seop ;
Shin, Dong Hoon ;
Kim, Sung Gun ;
Jang, Jyongsik .
NANOSCALE, 2015, 7 (38) :16026-16033
[18]   All conducting polymer electrodes for asymmetric solid-state supercapacitors [J].
Kurra, Narendra ;
Wang, Ruiqi ;
Alshareef, H. N. .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (14) :7368-7374
[19]   Fabrication of Graphene Sheets Intercalated with Manganese Oxide/Carbon Nanofibers: Toward High-Capacity Energy Storage [J].
Kwon, Oh Seok ;
Kim, Taejoon ;
Lee, Jun Seop ;
Park, Seon Joo ;
Park, Hyun-Woo ;
Kang, Minjeong ;
Lee, Ji Eun ;
Jang, Jyongsik ;
Yoon, Hyeonseok .
SMALL, 2013, 9 (02) :248-254
[20]   Structural evolution of multi-walled carbon nanotube/MnO2 composites as supercapacitor electrodes [J].
Li, Qiang ;
Anderson, Jordan M. ;
Chen, Yiqing ;
Zhai, Lei .
ELECTROCHIMICA ACTA, 2012, 59 :548-557