Core-Shell Composite Fibers for High-Performance Flexible Supercapacitor Electrodes

被引:78
作者
Lu, Xiaoyan [1 ,3 ]
Shen, Chen [1 ,2 ]
Zhang, Zeyang [1 ,3 ]
Barrios, Elizabeth [1 ,2 ]
Zhai, Lei [1 ,2 ,3 ]
机构
[1] Univ Cent Florida, NanoSci Technol Ctr, Orlando, FL 32826 USA
[2] Univ Cent Florida, Dept Chem, Orlando, FL 32816 USA
[3] Univ Cent Florida, Dept Mat Sci & Engn, Orlando, FL 32816 USA
基金
美国国家科学基金会;
关键词
MnO2; polyelectrolyte; polypyrrole; core-shell nanofiber; flexible supercapacitor electrodes; CONDUCTING-POLYMER; ELECTROCHEMICAL PERFORMANCE; MANGANESE-DIOXIDE; TERNARY COMPOSITE; CARBON NANOFIBER; NANO-CABLES; MNO2; ENERGY; CAPACITANCE; OXIDE;
D O I
10.1021/acsami.7b12997
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Core-shell nanofibers containing poly(acrylic acid) (PAA) and manganese oxide nanoparticles as the core and polypyrrole (PPy) as the shell were fabricated through electrospinning the solution of PAA and manganese ions (PAA/Mn2+). The obtained nanofibers were stabilized by Fe3+ through the interaction between Fe3+ ions and carboxylate groups. Subsequent oxidation of Mn2+ by KMnO4 produced uniform manganese dioxide (MnO2) nanoparticles in the fibers. A PPy shell was created on the fibers by immersing the fibers in a pyrrole solution where the Fe3+ ions in the fiber polymerized the pyrrole on the fiber surfaces. In the MnO2@PAA/PPy core-shell composite fibers, MnO2 nanoparticles function as high-capacity materials, while the PPy shell prevents the loss of MnO2 during the charge/discharge process. Such a unique structure makes the composite fibers efficient electrode materials for supercapacitors. The gravimetric specific capacity of the MnO2@PAA/PPy core-shell composite fibers was 564 F/g based on cyclic voltammetry curves at 10 mV/s and 580 F/g based on galvanostatic charge/discharge studies at 5 A/g. The MnO2@PAA/PPy core-shell composite fibers also present stable cycling performance with 100% capacitance retention after 5000 cycles.
引用
收藏
页码:4041 / 4049
页数:9
相关论文
共 61 条
[1]   3D flowerlike poly(3,4-ethylenedioxythiophene) for high electrochemical capacitive energy storage [J].
Bai, Xiaoxia ;
Hu, Xiujie ;
Zhou, Shuyun ;
Yan, Jun ;
Sun, Chenghua ;
Chen, Ping ;
Li, Laifeng .
ELECTROCHIMICA ACTA, 2013, 106 :219-225
[2]   Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting [J].
Balogun, Muhammad-Sadeeq ;
Huang, Yongchao ;
Qiu, Weitao ;
Yang, Hao ;
Ji, Hongbing ;
Tong, Yexiang .
MATERIALS TODAY, 2017, 20 (08) :425-451
[3]   Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni [J].
Biesinger, Mark C. ;
Payne, Brad P. ;
Grosvenor, Andrew P. ;
Lau, Leo W. M. ;
Gerson, Andrea R. ;
Smart, Roger St. C. .
APPLIED SURFACE SCIENCE, 2011, 257 (07) :2717-2730
[4]   Manipulating Mechanical Properties with Electricity: Electroplastic Elastomer Hydrogels [J].
Calvo-Marzal, Percy ;
Delaney, Mark P. ;
Auletta, Jeffrey T. ;
Pan, Tianqi ;
Perri, Nicholas M. ;
Weiland, Lisa M. ;
Waldeck, David H. ;
Clark, William W. ;
Meyer, Tara Y. .
ACS MACRO LETTERS, 2012, 1 (01) :204-208
[5]   A Multifunctional Gold Nanoparticle/Polyelectrolyte Fibrous Nanocomposite Prepared from Electrospinning Process [J].
Chen, Hui ;
Chunder, Anindarupa ;
Liu, Xiong ;
Haque, Feroz ;
Zou, Jianhua ;
Austin, Lauren ;
Knowles, Genevieve ;
Zhai, Lei ;
Huo, Qun .
MATERIALS EXPRESS, 2011, 1 (02) :154-159
[6]   O22-/O- functionalized oxygen-deficient Co3O4 nanorods as high performance supercapacitor electrodes and electrocatalysts towards water splitting [J].
Cheng, Guanhua ;
Kou, Tianyi ;
Zhang, Jie ;
Si, Conghui ;
Gao, Hui ;
Zhang, Zhonghua .
NANO ENERGY, 2017, 38 :155-166
[7]   Capacity Fade Mechanism of Li4Ti5O12 Nanosheet Anode [J].
Chiu, Hsien-Chieh ;
Lu, Xia ;
Zhou, Jigang ;
Gu, Lin ;
Reid, Joel ;
Gauvin, Raynald ;
Zaghib, Karim ;
Demopoulos, George P. .
ADVANCED ENERGY MATERIALS, 2017, 7 (05)
[8]   Synthesis of a MnO2 Nanosheet/Graphene Flake Composite and Its Application as a Supercapacitor having High Rate Capability [J].
Chu, Qingxin ;
Du, Juan ;
Lu, Wenbo ;
Chang, Guohui ;
Xing, Zhicai ;
Li, Haiyan ;
Ge, Chenjiao ;
Wang, Lei ;
Luo, Yonglan ;
Asiri, Abdullah M. ;
Al-Youbi, Abdulrahman O. ;
Sun, Xuping .
CHEMPLUSCHEM, 2012, 77 (10) :872-876
[9]   Electrical properties of intrinsically conductive core-shell polypyrrole/poly(vinylidene fluoride) electrospun fibers [J].
Dias, J. C. ;
Correi, D. M. ;
Botelho, G. ;
Lanceros-Mendez, S. ;
Sencadas, V. .
SYNTHETIC METALS, 2014, 197 :198-203
[10]   An in situ correlative STEM-EDS and HRTEM based nanoscale chemical characterization of solid-liquid interfaces in an aluminium alloy [J].
Eswara, S. ;
Mitterbauer, C. ;
Wirtz, T. ;
Kujawa, S. ;
Howe, J. M. .
JOURNAL OF MICROSCOPY, 2016, 264 (01) :64-70