The selection problem for discounted Hamilton-Jacobi equations: some non-convex cases

被引:12
作者
Gomes, Diogo A. [1 ]
Mitake, Hiroyoshi [2 ]
Tran, Hung V. [3 ]
机构
[1] King Abdullah Univ Sci & Technol, CEMSE Div, Thuwal 239556900, Saudi Arabia
[2] Hiroshima Univ, Inst Engn, Div Elect Syst & Math Engn, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 7398527, Japan
[3] Univ Wisconsin, Dept Math, Van Vleck Hall,480 Lincoln Dr, Madison, WI 53706 USA
基金
美国国家科学基金会; 英国科研创新办公室; 日本学术振兴会;
关键词
nonconvex Hamilton-Jacobi equations; discounted approximation; ergodic problems; nonlinear adjoint methods; AUBRY-MATHER THEORY; VISCOSITY SOLUTIONS; CONVERGENCE; HOMOGENIZATION; ADJOINT;
D O I
10.2969/jmsj/07017534
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Here, we study the selection problem for the vanishing discount approximation of non-convex, first-order Hamilton Jacobi equations. While the selection problem is well understood for convex Hamiltonians, the selection problem for non-convex Hamiltonians has thus far not been studied. We begin our study by examining a generalized discounted Hamilton Jacobi equation. Next, using an exponential transformation, we apply our methods to strictly quasi-convex and to some non-convex Hamilton Jacobi equations. Finally, we examine a non-convex Hamiltonian with flat parts to which our results do not directly apply. In this case, we establish the convergence by a direct approach.
引用
收藏
页码:345 / 364
页数:20
相关论文
共 50 条
[31]   THE ASYMPTOTIC BOUNDS OF VISCOSITY SOLUTIONS OF THE CAUCHY PROBLEM FOR HAMILTON-JACOBI EQUATIONS [J].
Wang, Kaizhi .
PACIFIC JOURNAL OF MATHEMATICS, 2019, 298 (01) :217-232
[32]   Convergence of the solutions of the discounted Hamilton-Jacobi equation: A counterexample [J].
Ziliotto, Bruno .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 128 :330-338
[33]   CONVEX FORMULATIONS OF DATA ASSIMILATION PROBLEMS FOR A CLASS OF HAMILTON-JACOBI EQUATIONS [J].
Claudel, Christian G. ;
Bayen, Alexandre M. .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2011, 49 (02) :383-402
[34]   Convex Hamilton-Jacobi Equations Under Superlinear Growth Conditions on Data [J].
Francesca Da Lio ;
Olivier Ley .
Applied Mathematics & Optimization, 2011, 63 :309-339
[35]   Rate of convergence in periodic homogenization for convex Hamilton-Jacobi equations with multiscales [J].
Han, Yuxi ;
Jang, Jiwoong .
NONLINEARITY, 2023, 36 (10) :5279-5297
[36]   Convex Hamilton-Jacobi Equations Under Superlinear Growth Conditions on Data [J].
Da Lio, Francesca ;
Ley, Olivier .
APPLIED MATHEMATICS AND OPTIMIZATION, 2011, 63 (03) :309-339
[37]   SBV-like regularity for Hamilton-Jacobi equations with a convex Hamiltonian [J].
Bianchini, Stefano ;
Tonon, Daniela .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 391 (01) :190-208
[38]   Homogenization of Monotone Systems of Non-Coercive Hamilton-Jacobi Equations [J].
Junfang Wang ;
Peihao Zhao .
Indian Journal of Pure and Applied Mathematics, 2018, 49 :285-300
[40]   Perturbation problems in homogenization of Hamilton-Jacobi equations [J].
Cardaliaguet, Pierre ;
Le Bris, Claude ;
Souganidis, Panagiotis E. .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 117 :221-262