The selection problem for discounted Hamilton-Jacobi equations: some non-convex cases

被引:12
作者
Gomes, Diogo A. [1 ]
Mitake, Hiroyoshi [2 ]
Tran, Hung V. [3 ]
机构
[1] King Abdullah Univ Sci & Technol, CEMSE Div, Thuwal 239556900, Saudi Arabia
[2] Hiroshima Univ, Inst Engn, Div Elect Syst & Math Engn, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 7398527, Japan
[3] Univ Wisconsin, Dept Math, Van Vleck Hall,480 Lincoln Dr, Madison, WI 53706 USA
基金
美国国家科学基金会; 英国科研创新办公室; 日本学术振兴会;
关键词
nonconvex Hamilton-Jacobi equations; discounted approximation; ergodic problems; nonlinear adjoint methods; AUBRY-MATHER THEORY; VISCOSITY SOLUTIONS; CONVERGENCE; HOMOGENIZATION; ADJOINT;
D O I
10.2969/jmsj/07017534
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Here, we study the selection problem for the vanishing discount approximation of non-convex, first-order Hamilton Jacobi equations. While the selection problem is well understood for convex Hamiltonians, the selection problem for non-convex Hamiltonians has thus far not been studied. We begin our study by examining a generalized discounted Hamilton Jacobi equation. Next, using an exponential transformation, we apply our methods to strictly quasi-convex and to some non-convex Hamilton Jacobi equations. Finally, we examine a non-convex Hamiltonian with flat parts to which our results do not directly apply. In this case, we establish the convergence by a direct approach.
引用
收藏
页码:345 / 364
页数:20
相关论文
共 50 条
[21]   HOMOGENIZATION OF MONOTONE SYSTEMS OF NON-COERCIVE HAMILTON-JACOBI EQUATIONS [J].
Wang, Junfang ;
Zhao, Peihao .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2018, 49 (02) :285-300
[22]   Large Time Asymptotics of Hamilton-Jacobi Equations [J].
DYNAMICAL AND GEOMETRIC ASPECTS OF HAMILTON-JACOBI AND LINEARIZED MONGE-AMPERE EQUATIONS, VIASM 2016, 2017, 2183 :141-176
[23]   Minimax and viscosity solutions of Hamilton-Jacobi equations in the convex case [J].
Bernardi, Olga ;
Cardin, Franco .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2006, 5 (04) :793-812
[24]   CONSERVATION LAWS AND HAMILTON-JACOBI EQUATIONS ON A JUNCTION: THE CONVEX CASE [J].
Cardaliaguet, Pierre ;
Forcadel, Nicolas ;
Girard, Theo ;
Monneau, Regis .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2024, 44 (12) :3920-3961
[25]   Homogenization of pathwise Hamilton-Jacobi equations [J].
Seeger, Benjamin .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 110 :1-31
[26]   THE INVERSE PROBLEM FOR HAMILTON-JACOBI EQUATIONS AND SEMICONCAVE ENVELOPES [J].
Esteve, Carlos ;
Zuazua, Enrique .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2020, 52 (06) :5627-5657
[27]   HOMOGENIZATION OF METRIC HAMILTON-JACOBI EQUATIONS [J].
Oberman, Adam M. ;
Takei, Ryo ;
Vladimirsky, Alexander .
MULTISCALE MODELING & SIMULATION, 2009, 8 (01) :269-295
[28]   On the generalized Dirichlet problem for viscous Hamilton-Jacobi equations [J].
Barles, G ;
Da Lio, F .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (01) :53-75
[29]   THE NONCONVEX MULTIDIMENSIONAL RIEMANN PROBLEM FOR HAMILTON-JACOBI EQUATIONS [J].
BARDI, M ;
OSHER, S .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1991, 22 (02) :344-351
[30]   Algorithm for Overcoming the Curse of Dimensionality For Time-Dependent Non-convex Hamilton-Jacobi Equations Arising From Optimal Control and Differential Games Problems [J].
Chow, Yat Tin ;
Darbon, Jerome ;
Osher, Stanley ;
Yin, Wotao .
JOURNAL OF SCIENTIFIC COMPUTING, 2017, 73 (2-3) :617-643