The selection problem for discounted Hamilton-Jacobi equations: some non-convex cases

被引:12
|
作者
Gomes, Diogo A. [1 ]
Mitake, Hiroyoshi [2 ]
Tran, Hung V. [3 ]
机构
[1] King Abdullah Univ Sci & Technol, CEMSE Div, Thuwal 239556900, Saudi Arabia
[2] Hiroshima Univ, Inst Engn, Div Elect Syst & Math Engn, 1-4-1 Kagamiyama, Higashihiroshima, Hiroshima 7398527, Japan
[3] Univ Wisconsin, Dept Math, Van Vleck Hall,480 Lincoln Dr, Madison, WI 53706 USA
基金
日本学术振兴会; 美国国家科学基金会;
关键词
nonconvex Hamilton-Jacobi equations; discounted approximation; ergodic problems; nonlinear adjoint methods; AUBRY-MATHER THEORY; VISCOSITY SOLUTIONS; CONVERGENCE; HOMOGENIZATION; ADJOINT;
D O I
10.2969/jmsj/07017534
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Here, we study the selection problem for the vanishing discount approximation of non-convex, first-order Hamilton Jacobi equations. While the selection problem is well understood for convex Hamiltonians, the selection problem for non-convex Hamiltonians has thus far not been studied. We begin our study by examining a generalized discounted Hamilton Jacobi equation. Next, using an exponential transformation, we apply our methods to strictly quasi-convex and to some non-convex Hamilton Jacobi equations. Finally, we examine a non-convex Hamiltonian with flat parts to which our results do not directly apply. In this case, we establish the convergence by a direct approach.
引用
收藏
页码:345 / 364
页数:20
相关论文
共 50 条
  • [1] Non-convex Hamilton-Jacobi equations with gradient constraints
    Chang-Lara, Hector A.
    Pimentel, Edgard A.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 210
  • [2] Homogenization and non-homogenization of certain non-convex Hamilton-Jacobi equations
    Feldman, William M.
    Souganidis, Panagiotis E.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 108 (05): : 751 - 782
  • [3] CONVERGENCE OF SOLUTIONS FOR SOME DEGENERATE DISCOUNTED HAMILTON-JACOBI EQUATIONS
    Zavidovique, Maxime
    ANALYSIS & PDE, 2022, 15 (05): : 1287 - 1311
  • [4] GLOBAL PROPAGATION OF SINGULARITIES FOR DISCOUNTED HAMILTON-JACOBI EQUATIONS
    Chen, Cui
    Hong, Jiahui
    Zhao, Kai
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (04) : 1949 - 1970
  • [5] Discounted Hamilton-Jacobi Equations on Networks and Asymptotic Analysis
    Pozza, Marco
    Siconolfi, Antonio
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2021, 70 (03) : 1103 - 1129
  • [6] SMOOTH SUBSOLUTIONS OF THE DISCOUNTED HAMILTON-JACOBI EQUATIONS
    Huang, Xiyao
    Jin, Liang
    Zhang, Jianlu
    Zhao, Kai
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2025, 38 (5-6) : 275 - 296
  • [7] Weak KAM theory for discounted Hamilton-Jacobi equations and its application
    Mitake, Hiroyoshi
    Soga, Kohei
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (03)
  • [8] On the Negative Limit of Viscosity Solutions for Discounted Hamilton-Jacobi Equations
    Wang, Ya-Nan
    Yan, Jun
    Zhang, Jianlu
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024, 36 (02) : 1347 - 1365
  • [9] STOCHASTIC HOMOGENIZATION OF HAMILTON-JACOBI AND "VISCOUS"-HAMILTON-JACOBI EQUATIONS WITH CONVEX NONLINEARITIES - REVISITED
    Lions, Pierre-Louis
    Souganidis, Panagiotis E.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2010, 8 (02) : 627 - 637
  • [10] Well-posedness of Hamilton-Jacobi equations in the Wasserstein space: non-convex Hamiltonians and common noise
    Daudin, Samuel
    Jackson, Joe
    Seeger, Benjamin
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2025, 50 (1-2) : 1 - 52