Exploring the phase space of multiple states in highly turbulent Taylor-Couette flow

被引:27
作者
van der Veen, Roeland C. A. [1 ,2 ]
Huisman, Sander G. [1 ,2 ]
Dung, On-Yu [1 ,2 ]
Tang, Ho L. [1 ,2 ]
Sun, Chao [1 ,2 ,3 ,4 ]
Lohse, Detlef [1 ,2 ,5 ]
机构
[1] Univ Twente, Phys Fluids Grp, MESA, Inst Nanotechnol, POB 217, NL-7500 AE Enschede, Netherlands
[2] Univ Twente, JM Burgers Ctr Fluid Dynam, POB 217, NL-7500 AE Enschede, Netherlands
[3] Tsinghua Univ, Ctr Combust Energy, Beijing 100084, Peoples R China
[4] Tsinghua Univ, Dept Thermal Engn, Beijing 100084, Peoples R China
[5] Max Planck Inst Dynam & Self Org, D-37077 Gottingen, Germany
来源
PHYSICAL REVIEW FLUIDS | 2016年 / 1卷 / 02期
基金
欧洲研究理事会;
关键词
DIRECT NUMERICAL-SIMULATION; THERMAL-CONVECTION; TRANSITION; NUMBER; TORQUE;
D O I
10.1103/PhysRevFluids.1.024401
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the existence of multiple turbulent states in highly turbulent Taylor-Couette flow in the range of Ta = 10(11) to 9 x 10(12) by measuring the global torques and the local velocities while probing the phase space spanned by the rotation rates of the inner and outer cylinders. The multiple states are found to be very robust and are expected to persist beyond Ta = 10(13). The rotation ratio is the parameter that most strongly controls the transitions between the flow states; the transitional values only weakly depend on the Taylor number. However, complex paths in the phase space are necessary to unlock the full region of multiple states. By mapping the flow structures for various rotation ratios in a Taylor-Couette setup with an equal radius ratio but a larger aspect ratio than before, multiple states are again observed. Here they are characterized by even richer roll structure phenomena, including an antisymmetrical roll state.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Optimal Taylor-Couette flow: radius ratio dependence
    Ostilla-Monico, Rodolfo
    Huisman, Sander G.
    Jannink, Tim J. G.
    Van Gils, Dennis P. M.
    Verzicco, Roberto
    Grossmann, Siegfried
    Sun, Chao
    Lohse, Detlef
    JOURNAL OF FLUID MECHANICS, 2014, 747 : 1 - 29
  • [22] Geometrical dependence of optimal bounds in Taylor-Couette flow
    Kumar, Anuj
    JOURNAL OF FLUID MECHANICS, 2022, 948
  • [23] Direct numerical simulation of inertio-elastic turbulent Taylor-Couette flow
    Song, Jiaxing
    Lin, Fenghui
    Liu, Nansheng
    Lu, Xi-Yun
    Khomami, Bamin
    JOURNAL OF FLUID MECHANICS, 2021, 926
  • [24] Drag reduction in turbulent Taylor-Couette flow by axial oscillation of inner cylinder
    Zhao, Ming-Xiang
    Yu, Ming
    Cao, Tao
    PHYSICS OF FLUIDS, 2021, 33 (05)
  • [25] Experimental techniques for turbulent Taylor-Couette flow and Rayleigh-Benard convection
    Sun, Chao
    Zhou, Quan
    NONLINEARITY, 2014, 27 (09) : R89 - R121
  • [26] Torque in Taylor-Couette flow of viscoelastic polymer solutions
    Martinez-Arias, Borja
    Peixinho, Jorge
    JOURNAL OF NON-NEWTONIAN FLUID MECHANICS, 2017, 247 : 221 - 228
  • [27] Torque Scaling in Turbulent Taylor-Couette Flow with Co- and Counterrotating Cylinders
    van Gils, Dennis P. M.
    Huisman, Sander G.
    Bruggert, Gert-Wim
    Sun, Chao
    Lohse, Detlef
    PHYSICAL REVIEW LETTERS, 2011, 106 (02)
  • [28] Turbulent structures in an optimal Taylor-Couette flow between concentric counter-rotating cylinders
    Jalalabadi, Razieh
    Kim, Jongmin
    Sung, Hyung Jin
    JOURNAL OF TURBULENCE, 2017, 18 (05): : 480 - 496
  • [29] Geometry mediated friction reduction in Taylor-Couette flow
    Raayai-Ardakani, Shabnam
    McKinley, Gareth H.
    PHYSICAL REVIEW FLUIDS, 2020, 5 (12)
  • [30] Momentum transport in Taylor-Couette flow with vanishing curvature
    Brauckmann, Hannes J.
    Salewski, Matthew
    Eckhardt, Bruno
    JOURNAL OF FLUID MECHANICS, 2016, 790 : 419 - 452