Semiconductor to metal transition in two-dimensional gold and its van der Waals heterostack with graphene

被引:74
作者
Forti, Stiven [1 ,2 ]
Link, Stefan [2 ]
Stoehr, Alexander [2 ]
Niu, Yuran [3 ]
Zakharov, Alexei A. [3 ]
Coletti, Camilla [1 ,4 ]
Starke, Ulrich [2 ]
机构
[1] Ist Italiano Tecnol, Ctr Nanotechnol Innovat NEST, Piazza San Silvestro 12, I-56127 Pisa, Italy
[2] Max Planck Inst Festkorperforsch, Feisenbergstr 1, D-70569 Stuttgart, Germany
[3] Lund Univ, MAX Lab 4, POB 118, S-22100 Lund, Sweden
[4] Ist Italiano Tecnol, Graphene Labs, Via Morego 30, I-16163 Genoa, Italy
基金
欧盟地平线“2020”;
关键词
ELECTRONIC-STRUCTURE; GRAPHITE; SURFACE; GROWTH;
D O I
10.1038/s41467-020-15683-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The synthesis of two-dimensional (2D) transition metals has attracted growing attention for both fundamental and application-oriented investigations, such as 2D magnetism, nanoplasmonics and non-linear optics. However, the large-area synthesis of this class of materials in a single-layer form poses non-trivial difficulties. Here we present the synthesis of a large-area 2D gold layer, stabilized in between silicon carbide and monolayer graphene. We show that the 2D-Au ML is a semiconductor with the valence band maximum 50 meV below the Fermi level. The graphene and gold layers are largely non-interacting, thereby defining a class of van der Waals heterostructure. The 2D-Au bands, exhibit a 225 meV spin-orbit splitting along the (Gamma K) over bar direction, making it appealing for spin-related applications. By tuning the amount of gold at the SiC/graphene interface, we induce a semiconductor to metal transition in the 2D-Au, which has not yet been observed and hosts great interest for fundamental physics.
引用
收藏
页数:7
相关论文
共 48 条
  • [1] Germanene termination of Ge2Pt crystals on Ge(110)
    Bampoulis, P.
    Zhang, L.
    Safaei, A.
    van Gastel, R.
    Poelsema, B.
    Zandvliet, H. J. W.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2014, 26 (44)
  • [2] Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics
    Berger, C
    Song, ZM
    Li, TB
    Li, XB
    Ogbazghi, AY
    Feng, R
    Dai, ZT
    Marchenkov, AN
    Conrad, EH
    First, PN
    de Heer, WA
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2004, 108 (52) : 19912 - 19916
  • [3] Quasiparticle dynamics in graphene
    Bostwick, Aaron
    Ohta, Taisuke
    Seyller, Thomas
    Horn, Karsten
    Rotenberg, Eli
    [J]. NATURE PHYSICS, 2007, 3 (01) : 36 - 40
  • [4] Observation of Plasmarons in Quasi-Freestanding Doped Graphene
    Bostwick, Aaron
    Speck, Florian
    Seyller, Thomas
    Horn, Karsten
    Polini, Marco
    Asgari, Reza
    MacDonald, Allan H.
    Rotenberg, Eli
    [J]. SCIENCE, 2010, 328 (5981) : 999 - 1002
  • [5] Two-Dimensional Metal Nanomaterials: Synthesis, Properties, and Applications
    Chen, Ye
    Fan, Zhanxi
    Zhang, Zhicheng
    Niu, Wenxin
    Li, Cuiling
    Yang, Nailiang
    Chen, Bo
    Zhang, Hua
    [J]. CHEMICAL REVIEWS, 2018, 118 (13) : 6409 - 6455
  • [6] Electronic structures of an epitaxial graphene monolayer on SiC(0001) after gold intercalation: a first-principles study
    Chuang, Feng-Chuan
    Lin, Wen-Huan
    Huang, Zhi-Quan
    Hsu, Chia-Hsiu
    Kuo, Chien-Cheng
    Ozolins, Vidvuds
    Yeh, V.
    [J]. NANOTECHNOLOGY, 2011, 22 (27)
  • [7] Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene
    Davila, M. E.
    Xian, L.
    Cahangirov, S.
    Rubio, A.
    Le Lay, G.
    [J]. NEW JOURNAL OF PHYSICS, 2014, 16
  • [8] Emtsev KV, 2009, NAT MATER, V8, P203, DOI [10.1038/nmat2382, 10.1038/NMAT2382]
  • [9] Heteroepitaxial graphite on 6H-SiC(0001):: Interface formation through conduction-band electronic structure
    Forbeaux, I
    Themlin, JM
    Debever, JM
    [J]. PHYSICAL REVIEW B, 1998, 58 (24): : 16396 - 16406
  • [10] Mini-Dirac cones in the band structure of a copper intercalated epitaxial graphene superlattice
    Forti, S.
    Stoehr, A.
    Zakharov, A. A.
    Coletti, C.
    Emtsev, K. V.
    Starke, U.
    [J]. 2D MATERIALS, 2016, 3 (03):