The groups of automorphisms of the Lie algebras of polynomial vector fields with zero or constant divergence

被引:1
作者
Bavula, V. V. [1 ]
机构
[1] Univ Sheffield, Dept Pure Math, Hicks Bldg, Sheffield S3 7RH, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
Automorphism; derivation; group of automorphisms; Lie algebra; locally nilpotent derivation; the divergence; the Lie algebras of polynomial vector fields with zero or constant divergence;
D O I
10.1080/00927872.2016.1175596
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let P-n = K[x(1),..., x(n)] be a polynomial algebra over a field K of characteristic zero and Dip(n)(0) (respectively, dip(n)(c)) be the Lie algebra of derivations of P-n with zero (respectively, constant) divergence. We prove that Aut(Lie)(dip(n)(0)) similar or equal to Aut(K-alg)(P-n) (n >= 2) and Aut(Lie)(dip(n)(c)) similar or equal to Aut(K-alg)(P-n). The Lie algebra dip(n)(c) is a maximal Lie subalgebra of Der(K)(P-n) Minimal finite sets of generators are found for the Lie algebras dip(n)(0) and dipp(n)(c).
引用
收藏
页码:1114 / 1133
页数:20
相关论文
共 10 条