Nonlocal Telegraph Equation in Frame of the Conformable Time-Fractional Derivative

被引:29
作者
Bouaouid, Mohamed [1 ]
Hilal, Khalid [1 ]
Melliani, Said [1 ]
机构
[1] Sultan Moulay Slimane Univ, Dept Math, BP 523, Beni Mellal 23000, Morocco
关键词
D O I
10.1155/2019/7528937
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We use the cosine family of linear operators to prove the existence, uniqueness, and stability of the integral solution of a nonlocal telegraph equation in frame of the conformable time-fractional derivative. Moreover, we give its implicit fundamental solution in terms of the classical trigonometric functions.
引用
收藏
页数:7
相关论文
共 23 条
[1]   On conformable fractional calculus [J].
Abdeljawad, Thabet .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 279 :57-66
[2]  
[Anonymous], 1999, MATH SCI ENG
[3]   THEOREMS ABOUT THE EXISTENCE AND UNIQUENESS OF SOLUTIONS OF A SEMILINEAR EVOLUTION NONLOCAL CAUCHY-PROBLEM [J].
BYSZEWSKI, L .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1991, 162 (02) :494-505
[4]   Fractional telegraph equations [J].
Cascaval, RC ;
Eckstein, EC ;
Frota, CL ;
Goldstein, JA .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 276 (01) :145-159
[5]   Analytical solution for the time-fractional telegraph equation by the method of separating variables [J].
Chen, J. ;
Liu, F. ;
Anh, V. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 338 (02) :1364-1377
[6]   Fractional Newton mechanics with conformable fractional derivative [J].
Chung, Won Sang .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 290 :150-158
[7]   An approximate analytical solution of time-fractional telegraph equation [J].
Das, S. ;
Vishal, K. ;
Gupta, P. K. ;
Yildirim, A. .
APPLIED MATHEMATICS AND COMPUTATION, 2011, 217 (18) :7405-7411
[8]   EXPONENTIAL DECAY OF SOLUTIONS OF SEMILINEAR PARABOLIC EQUATIONS WITH NONLOCAL INITIAL CONDITIONS [J].
DENG, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1993, 179 (02) :630-637
[9]  
Eckstein E.C., 1999, ELECTRON J DIFFER EQ, V3, P39
[10]  
Hernndez Eduardo, 2003, ELECT J DIFFERENTIAL, V2003, P1