Analytic solutions of the Wheeler-DeWitt equation in spherically symmetric space-time

被引:12
|
作者
Kenmoku, M [1 ]
Kubotani, H
Takasugi, E
Yamazaki, Y
机构
[1] Nara Womens Univ, Dept Phys, Nara 6308506, Japan
[2] Kanagawa Univ, Fac Engn, Yokohama, Kanagawa 221, Japan
[3] Osaka Univ, Dept Phys, Osaka 560, Japan
[4] Nara Womens Univ, Hrad Sch Human Culture, Nara 6308506, Japan
来源
PHYSICAL REVIEW D | 1999年 / 59卷 / 12期
关键词
D O I
10.1103/PhysRevD.59.124004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The canonical quantum theory of Einstein gravity with a cosmological constant in spherically symmetric space-time is analyzed. A mass operator can be introduced as a dynamical variable due to spherically symmetry. The operator ordering in the Hamiltonian, the momentum, and the mass operator is properly fixed so that they form a closed algebra. In this scheme, we obtain the analytic solution which simultaneously satisfies the Wheeler-DeWitt equation, the momentum constraint, and the mass constraint. [S0556-2821 (99)00312-4].
引用
收藏
页数:6
相关论文
共 50 条
  • [1] De Broglie-Bohm interpretation for analytic solutions of the Wheeler-DeWitt equation in spherically symmetric space-time
    Kenmoku, M
    Kubotani, H
    Takasugi, E
    Yamazaki, Y
    PROGRESS OF THEORETICAL PHYSICS, 2001, 105 (06): : 897 - 914
  • [2] SOLUTIONS OF THE WHEELER-DEWITT EQUATION
    CHAKRABORTY, S
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1992, 31 (02) : 289 - 302
  • [3] A Wheeler-DeWitt Equation with Time
    Rotondo, Marcello
    UNIVERSE, 2022, 8 (11)
  • [4] Interpretation of the solutions of the Wheeler-DeWitt equation
    Parentani, R
    PHYSICAL REVIEW D, 1997, 56 (08): : 4618 - 4624
  • [5] Discrete Wheeler-DeWitt equation
    Hamber, Herbert W.
    Williams, Ruth M.
    PHYSICAL REVIEW D, 2011, 84 (10):
  • [6] Against the Wheeler-DeWitt equation
    Landsman, NP
    CLASSICAL AND QUANTUM GRAVITY, 1995, 12 (12) : L119 - L123
  • [7] Exact solutions of the Wheeler-DeWitt equation and the Yamabe construction
    Ita, Eyo Eyo, III
    Soo, Chopin
    ANNALS OF PHYSICS, 2015, 359 : 80 - 96
  • [8] Class of solutions of the Wheeler-DeWitt equation with ordering parameter
    Vieira, H. S.
    Bezerra, V. B.
    Muniz, C. R.
    Cunha, M. S.
    Christiansen, H. R.
    PHYSICS LETTERS B, 2020, 809
  • [9] Deformation of the Wheeler-DeWitt equation
    Faizal, Mir
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2014, 29 (20):
  • [10] PERTURBATIVE APPROACH TO THE WHEELER-DEWITT EQUATION
    ANADA, H
    KITAZOE, T
    MIZUMOTO, Y
    MODERN PHYSICS LETTERS A, 1993, 8 (01) : 45 - 52