Follow But No Track: Privacy Preserved Profile Publishing in Cyber-Physical Social Systems
被引:111
作者:
Zheng, Xu
论文数: 0引用数: 0
h-index: 0
机构:
Georgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USAGeorgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USA
Zheng, Xu
[1
]
Cai, Zhipeng
论文数: 0引用数: 0
h-index: 0
机构:
Georgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USAGeorgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USA
Cai, Zhipeng
[1
]
Yu, Jiguo
论文数: 0引用数: 0
h-index: 0
机构:
Qufu Normal Univ, Sch Informat Sci & Engn, Jining 276826, Shandong, Peoples R ChinaGeorgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USA
Yu, Jiguo
[2
]
Wang, Chaokun
论文数: 0引用数: 0
h-index: 0
机构:
Tsinghua Univ, Sch Software, Beijing 100084, Peoples R ChinaGeorgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USA
Wang, Chaokun
[3
]
Li, Yingshu
论文数: 0引用数: 0
h-index: 0
机构:
Georgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USAGeorgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USA
Li, Yingshu
[1
]
机构:
[1] Georgia State Univ, Dept Comp Sci, Atlanta, GA 30303 USA
[2] Qufu Normal Univ, Sch Informat Sci & Engn, Jining 276826, Shandong, Peoples R China
[3] Tsinghua Univ, Sch Software, Beijing 100084, Peoples R China
来源:
IEEE INTERNET OF THINGS JOURNAL
|
2017年
/
4卷
/
06期
基金:
美国国家科学基金会;
高等学校博士学科点专项科研基金;
中国国家自然科学基金;
关键词:
Cyber-physical system (CPS);
data publication;
social networks;
user profile;
PROTECTION;
D O I:
10.1109/JIOT.2017.2679483
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
Due to the close correlation with individual's physical features and status, the adoption of cyber-physical social systems (CPSSs) has been inevitably hindered by users' privacy concerns. Such concerns keep growing as our bile devices have more embedded sensors, while the existing countermeasures only provide incapable and limited privacy preservation for sensitive physical information. Therefore, we propose a novel privacy preservation framework for CPSSs. We formulate both the privacy concerns and user expectations in CPSSs based on real-world knowledge. We also design a corresponding data publishing mechanism for users. It regulates the publishing behaviors to hide sensitive physical profiles. Meanwhile, the published data retain comprehensive social profiles for users. Our analysis demonstrates that the mechanism achieves a local maximized performance on the aspect published data size. The experiment results toward real datasets reveals that the performance is comparable to the global optimal one.