Ensemble transcript interaction networks: A case study on Alzheimer's disease

被引:9
作者
Armananzas, Ruben [1 ]
Larranaga, Pedro [1 ]
Bielza, Concha [1 ]
机构
[1] Univ Politecn Madrid, Dept Inteligencia Artificial, Madrid, Spain
关键词
Bayesian network classifiers; Interaction networks; Alzheimer's disease; High-throughput data; GENE-EXPRESSION; CLASSIFICATION; ASSOCIATION;
D O I
10.1016/j.cmpb.2011.11.011
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Systems biology techniques are a topic of recent interest within the neurological field. Computational intelligence (CI) addresses this holistic perspective by means of consensus or ensemble techniques ultimately capable of uncovering new and relevant findings. In this paper, we propose the application of a CI approach based on ensemble Bayesian network classifiers and multivariate feature subset selection to induce probabilistic dependences that could match or unveil biological relationships. The research focuses on the analysis of high-throughput Alzheimer's disease (AD) transcript profiling. The analysis is conducted from two perspectives. First, we compare the expression profiles of hippocampus subregion entorhinal cortex (EC) samples of AD patients and controls. Second, we use the ensemble approach to study four types of samples: EC and dentate gyrus (DG) samples from both patients and controls. Results disclose transcript interaction networks with remarkable structures and genes not directly related to AD by previous studies. The ensemble is able to identify a variety of transcripts that play key roles in other neurological pathologies. Classical statistical assessment by means of non-parametric tests confirms the relevance of the majority of the transcripts. The ensemble approach pinpoints key metabolic mechanisms that could lead to new findings in the pathogenesis and development of AD. (c) 2011 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:442 / 450
页数:9
相关论文
共 35 条
[1]   Robust biomarker identification for cancer diagnosis with ensemble feature selection methods [J].
Abeel, Thomas ;
Helleputte, Thibault ;
Van de Peer, Yves ;
Dupont, Pierre ;
Saeys, Yvan .
BIOINFORMATICS, 2010, 26 (03) :392-398
[2]  
[Anonymous], INT C ART INT
[3]   A quantitative near-infrared spectroscopy study: A decrease in cerebral hemoglobin oxygenation in Alzheimer's disease and mild cognitive impairment [J].
Arai, Heii ;
Takano, Maki ;
Miyakawa, Koichi ;
Ota, Tsuneyoshi ;
Takahashi, Tadashi ;
Asaka, Hiroka'zu ;
Kawaguchi, Tsuneaki .
BRAIN AND COGNITION, 2006, 61 (02) :189-194
[4]   Detecting reliable gene interactions by a hierarchy of Bayesian network classifiers [J].
Armananzas, Ruben ;
Inza, Inaki ;
Larranaga, Pedro .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2008, 91 (02) :110-121
[5]   Microarray Analysis of Autoimmune Diseases by Machine Learning Procedures [J].
Armananzas, Ruben ;
Calvo, Borja ;
Inza, Inaki ;
Lopez-Hoyos, Marcos ;
Martinez-Taboada, Victor ;
Ucar, Eduardo ;
Bernales, Irantzu ;
Fullaondo, Asier ;
Larranaga, Pedro ;
Zubiaga, Ana M. .
IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2009, 13 (03) :341-350
[6]   Identifying genes that contribute most to good classification in microarrays [J].
Baker, Stuart G. ;
Kramer, Barnett S. .
BMC BIOINFORMATICS, 2006, 7 (1)
[7]   A comparison of alternative tests of significance for the problem of m rankings [J].
Friedman, M .
ANNALS OF MATHEMATICAL STATISTICS, 1940, 11 :86-92
[8]   Submicroscopic duplications of the hydroxysteroid dehydrogenase HSD17B10 and the E3 ubiquitin ligase HUWE1 are associated with mental retardation [J].
Froyen, Guy ;
Corbett, Mark ;
Vandewalle, Joke ;
Jarvela, Irma ;
Lawrence, Owen ;
Meldrum, Cliff ;
Bauters, Marijke ;
Govaerts, Karen ;
Vandeleur, Lucianne ;
van Esch, Hilde ;
Chelly, Jamel ;
Sanlaville, Damien ;
van Bokhoven, Hans ;
Ropers, Hans-Hilger ;
Laumonnier, Frederic ;
Ranieri, Enzo ;
Schwartz, Charles E. ;
Abidi, Fatima ;
Tarpey, Patrick S. ;
Futreal, P. Andrew ;
Whibley, Annabel ;
Raymond, F. Lucy ;
Stratton, Michael R. ;
Fryns, Jean-Pierre ;
Scott, Rodney ;
Peippo, Maarit ;
Sipponen, Marjatta ;
Partington, Michael ;
Mowat, David ;
Field, Michael ;
Hackett, Anna ;
Marynen, Peter ;
Turner, Gillian ;
Gecz, Jozef .
AMERICAN JOURNAL OF HUMAN GENETICS, 2008, 82 (02) :432-443
[9]   A scan of chromosome 10 identifies a novel locus showing strong association with late-onset Alzheimer disease [J].
Grupe, A ;
Li, YH ;
Rowland, C ;
Nowotny, P ;
Hinrichs, AL ;
Smemo, S ;
Kauwe, JSK ;
Maxwell, TJ ;
Cherny, S ;
Doil, L ;
Tacey, K ;
van Luchene, R ;
Myers, A ;
Vrièze, FW ;
Kaleem, M ;
Hollingworth, P ;
Jehu, L ;
Foy, C ;
Archer, N ;
Hamilton, G ;
Holmans, P ;
Morris, CM ;
Catanese, J ;
Sninsky, J ;
White, TJ ;
Powell, J ;
Hardy, J ;
O'Donovan, M ;
Lovestone, S ;
Jones, L ;
Morris, JC ;
Thal, L ;
Owen, M ;
Williams, J ;
Goate, A .
AMERICAN JOURNAL OF HUMAN GENETICS, 2006, 78 (01) :78-88
[10]   Disturbance of endogenous circadian rhythm in aging and Alzheimer disease [J].
Harper, DG ;
Volicer, L ;
Stopa, EG ;
McKee, AC ;
Nitta, M ;
Satlin, A .
AMERICAN JOURNAL OF GERIATRIC PSYCHIATRY, 2005, 13 (05) :359-368