Upper tropospheric CH4 and CO affected by the South Asian summer monsoon during the Oxidation Mechanism Observations mission

被引:18
作者
Tomsche, Laura [1 ]
Pozzer, Andrea [1 ]
Ojha, Narendra [1 ]
Parchatka, Uwe [1 ]
Lelieveld, Jos [1 ]
Fischer, Horst [1 ]
机构
[1] Max Planck Inst Chem, Dept Atmospher Chem, D-55128 Mainz, Germany
关键词
DISPERSION MODEL FLEXPART; BOUNDARY-LAYER SOURCES; SUBMODEL SYSTEM MESSY; TECHNICAL NOTE; TRANSPORT; CLIMATE; ANTICYCLONE; CHEMISTRY; METHANE; EMISSIONS;
D O I
10.5194/acp-19-1915-2019
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The Asian monsoon anticyclone (AMA) is annual phenomenon in the northern hemispheric upper troposphere and lower stratosphere. It is part of the South Asian summer monsoon system, and it has a clearly observable signature due to the vertical transport of polluted air masses from the surface to the upper troposphere by monsoon convection. We performed in situ measurements of carbon monoxide (CO) and methane (CH4) in the region of monsoon outflow and in background air in the upper troposphere (Mediterranean, Arabian Peninsula, and Arabian Sea) using optical absorption spectroscopy on board the High Altitude and LOng range (HALO) research aircraft during the OMO (Oxidation Mechanism Observations) mission in summer 2015. We identified the transport pathways and the origin of the trace gases with back trajectories, which were calculated using the Lagrangian particle dispersion model FLEXPART, and we compared the in situ data with simulations of the atmospheric chemistry general circulation model EMAC. CH4 and CO mixing ratios were found to be enhanced within the AMA, the in situ data increased by 72.1 and 20.1 ppbv on average, respectively, and originated in the South Asian region (Indo-Gangetic Plain, northeastern India, Bangladesh, and the Bay of Bengal). It appears that CH4 is an ideal monsoon tracer in the upper troposphere due to its extended lifetime and the strong South Asian emissions. Furthermore, we used the measurements and model results to study the dynamics of the AMA over several weeks during the monsoon season, with an emphasis on the southern and western areas in the upper troposphere. We distinguished four AMA modes based on different meteorological conditions. On one occasion we observed that under the influence of dwindling flow the transport barrier between the anticyclone and its sur-roundings weakened, expelling air masses from the AMA. The trace gases exhibited a distinct AMA fingerprint; we also found that CH4 accumulated over the course of the OMO campaign.
引用
收藏
页码:1915 / 1939
页数:25
相关论文
共 72 条
[1]  
[Anonymous], ATMOSPHERIC CHEM PHY, DOI [10.5194/acp-2017-1212, DOI 10.5194/ACP-2017-1212]
[2]   Estimating the contribution of monsoon-related biogenic production to methane emissions from South Asia using CARIBIC observations [J].
Baker, Angela K. ;
Schuck, Tanja J. ;
Brenninkmeijer, Carl A. M. ;
Rauthe-Schoech, Armin ;
Slemr, Franz ;
van Velthoven, Peter F. J. ;
Lelieveld, Jos .
GEOPHYSICAL RESEARCH LETTERS, 2012, 39
[3]   Upper-tropospheric CO and O3 budget during the Asian summer monsoon [J].
Barret, Brice ;
Sauvage, Bastien ;
Bennouna, Yasmine ;
Le Flochmoen, Eric .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (14) :9129-9147
[4]   Atmospheric CH4 in the first decade of the 21st century: Inverse modeling analysis using SCIAMACHY satellite retrievals and NOAA surface measurements [J].
Bergamaschi, P. ;
Houweling, S. ;
Segers, A. ;
Krol, M. ;
Frankenberg, C. ;
Scheepmaker, R. A. ;
Dlugokencky, E. ;
Wofsy, S. C. ;
Kort, E. A. ;
Sweeney, C. ;
Schuck, T. ;
Brenninkmeijer, C. ;
Chen, H. ;
Beck, V. ;
Gerbig, C. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (13) :7350-7369
[5]   Boundary layer sources for the Asian anticyclone: Regional contributions to a vertical conduit [J].
Bergman, John W. ;
Fierli, Federico ;
Jensen, Eric J. ;
Honomichl, Shawn ;
Pan, Laura L. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2013, 118 (06) :2560-2575
[6]   A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARTs version 1.0) [J].
Bloom, A. Anthony ;
Bowman, Kevin W. ;
Lee, Meemong ;
Turner, Alexander J. ;
Schroeder, Ronny ;
Worden, John R. ;
Weidner, Richard ;
McDonald, Kyle C. ;
Jacob, Daniel J. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2017, 10 (06) :2141-2156
[7]   An aircraft gas chromatograph-mass spectrometer System for Organic Fast Identification Analysis (SOFIA): design, performance and a case study of Asian monsoon pollution outflow [J].
Bourtsoukidis, Efstratios ;
Helleis, Frank ;
Tomsche, Laura ;
Fischer, Horst ;
Hofmann, Rolf ;
Lelieveld, Jos ;
Williams, Jonathan .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2017, 10 (12) :5089-5105
[8]   Overview of the trace gas measurements on board the Citation aircraft during the intensive field phase of INDOEX [J].
de Gouw, JA ;
Warneke, C ;
Scheeren, HA ;
van der Veen, C ;
Bolder, M ;
Scheele, MP ;
Williams, J ;
Wong, S ;
Lange, L ;
Fischer, H ;
Lelieveld, J .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D22) :28453-28467
[9]   A mechanism for moistening the lower stratosphere involving the Asian summer monsoon [J].
Dethof, A ;
O'Neill, A ;
Slingo, JM ;
Smit, HGJ .
QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 1999, 125 (556) :1079-1106
[10]   Conversion of NOAA atmospheric dry air CH4 mole fractions to a gravimetrically prepared standard scale -: art. no. D18306 [J].
Dlugokencky, EJ ;
Myers, RC ;
Lang, PM ;
Masarie, KA ;
Crotwell, AM ;
Thoning, KW ;
Hall, BD ;
Elkins, JW ;
Steele, LP .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D18) :1-8