A Generative Approach for Image-Based Modeling of Tumor Growth

被引:0
|
作者
Menze, Bjoern H. [1 ,2 ]
Van Leemput, Koen [1 ,3 ,4 ]
Honkela, Antti [5 ]
Konukoglu, Ender [6 ]
Weber, Marc-Andre [7 ]
Ayache, Nicholas [2 ]
Golland, Polina [1 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, Cambridge, MA 02139 USA
[2] INRIA Sophia Antipolis, Asclepios Res Project, F-06902 Valbonne, France
[3] Massachusetts Gen Hosp, Harvard Med Sch, Dept Radiol, Boston, MA USA
[4] Aalto Univ, Dept Informat & Comp Sci, Espoo, Finland
[5] Univ Helsinki, Helsinki Inst Informat Technol HIIT, Helsinki, Finland
[6] Machine Learning & Perception Grp, Microsoft Res, Cambridge, England
[7] Heidelberg Univ Hosp, Dept Diag Radiol, Heidelberg, Germany
来源
基金
芬兰科学院;
关键词
BRAIN-TUMORS; DIFFUSION; REGISTRATION; GLIOMAS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Extensive imaging is routinely used in brain tumor patients to monitor the state of the disease and to evaluate therapeutic options. A large number of multi-modal and multi-temporal image volumes is acquired in standard clinical cases, requiring new approaches for comprehensive integration of information from different image sources and different time points. In this work we propose a joint generative model of tumor growth and of image observation that naturally handles multi-modal and longitudinal data. We use the model for analyzing imaging data in patients with glioma. The tumor growth model is based on a reaction-diffusion framework. Model personalization relies only on a forward model for the growth process and on image likelihood. We take advantage of an adaptive sparse grid approximation for efficient inference via Markov Chain Monte Carlo sampling. The approach can be used for integrating information from different multi-modal imaging protocols and can easily be adapted to other tumor growth models.
引用
收藏
页码:735 / 747
页数:13
相关论文
共 50 条
  • [1] A panoramic image-based approach to virtual scene modeling
    Xu Wei
    Xu Hu
    Zhang Maojuni
    Wu Lingda
    2006 IMACS: MULTICONFERENCE ON COMPUTATIONAL ENGINEERING IN SYSTEMS APPLICATIONS, VOLS 1 AND 2, 2006, : 1449 - +
  • [2] AN IMAGE-BASED APPROACH FOR THE ARCHITECTURAL MODELING OF PAST STATES
    Stefani, C.
    Busayarat, C.
    Renaudin, N.
    De Luca, L.
    Veron, P.
    Florenzano, M.
    4TH ISPRS INTERNATIONAL WORKSHOP 3D-ARCH 2011: 3D VIRTUAL RECONSTRUCTION AND VISUALIZATION OF COMPLEX ARCHITECTURES, 2011, 38-5 (W16): : 397 - 404
  • [3] An interactive image-based modeling approach with scene constraints
    Liu, G
    Bao, HJ
    Peng, QS
    CAD/ GRAPHICS TECHNOLOGY AND ITS APPLICATIONS, PROCEEDINGS, 2003, : 359 - +
  • [4] Image based modeling of tumor growth
    Meghdadi, N.
    Soltani, M.
    Niroomand-Oscuii, H.
    Ghalichi, F.
    AUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE, 2016, 39 (03) : 601 - 613
  • [5] Image based modeling of tumor growth
    N. Meghdadi
    M. Soltani
    H. Niroomand-Oscuii
    F. Ghalichi
    Australasian Physical & Engineering Sciences in Medicine, 2016, 39 : 601 - 613
  • [6] Correlation-constrained approach to partial image-based modeling
    Agam, G
    VISION GEOMETRY X, 2001, 4476 : 48 - 58
  • [7] An Image-Based Approach to Obtaining Anthropometric Measurements for Inertia Modeling
    Gittoes, Marianne J. R.
    Bezodis, Ian N.
    Wilson, Cassie
    JOURNAL OF APPLIED BIOMECHANICS, 2009, 25 (03) : 265 - 270
  • [8] Image-based surface modeling: a multi-resolution approach
    Sarti, A
    Tubaro, S
    SIGNAL PROCESSING, 2002, 82 (09) : 1215 - 1232
  • [9] An image-based approach to obtaining anthropometric measurements for inertia modeling
    Gittoes, Marianne J. R.
    Bezodis, Ian N.
    Wilson, Cassie
    Journal of Applied Biomechanics, 2009, 25 (03): : 265 - 270
  • [10] Image-based tree modeling
    Hong Kong University of Science and Technology
    不详
    不详
    ACM Trans Graphics, 2007, 3