Robust exponential attractors for the strongly damped wave equation with memory. I

被引:16
作者
Di Plinio, F. [1 ]
Pata, V. [1 ]
机构
[1] Politecn Milan, Dipartimento Matemat F Brioschi, I-20133 Milan, Italy
关键词
D O I
10.1134/S1061920808030014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the singular limit of the semilinear strongly damped wave equation with memory partial derivative(tt)u - gamma Delta partial derivative(t)u - k(0)Delta u - integral(infinity)(0) k '(s)Delta u(t - s)ds + phi(u) = f, in presence of an arbitrarily growing nonlinearity phi, as the memory kernel k(s) - k(infinity) converges to the Dirac mass at zero. The existence of a robust family of regular exponential attractors is established, under a necessary and sufficient condition on k, along with quantitative estimates of the closeness of the equation with memory to the corresponding limit equation.
引用
收藏
页码:301 / 315
页数:15
相关论文
共 25 条
[1]  
Borini S, 1999, ASYMPTOTIC ANAL, V20, P263
[2]   Attractors for strongly damped wave equations with critical nonlinearities [J].
Carvalho, AN ;
Cholewa, JW .
PACIFIC JOURNAL OF MATHEMATICS, 2002, 207 (02) :287-310
[3]  
Chepyzhov VV, 2006, ASYMPTOTIC ANAL, V46, P251
[4]   Singular limit of differential systems with memory [J].
Conti, M ;
Pata, V ;
Squassina, M .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (01) :169-215
[5]  
CONTI M, 2 DIMENSIONAL UNPUB
[6]  
DAFERMOS CM, 1970, ARCH RATION MECH AN, V37, P297
[7]  
DAFERMOS CM, 1976, LECT NOTES MATH, V503, P295
[8]  
Di Plinio F, 2008, INDIANA U MATH J, V57, P757
[9]  
EDEN A, 1996, TURKISH J MATH, V20, P425
[10]  
Fabrie P, 2004, DISCRETE CONT DYN-A, V10, P211