Existence and multiplicity of solutions for functional boundary value problems

被引:1
作者
Stanek, S [1 ]
机构
[1] Palacky Univ, Fac Sci, Dept Math Anal, Olomouc 77900, Czech Republic
关键词
functional boundary value problem; existence; multiplicity; Leray-Schauder degree; Borsuk antipodal theorem; alpha-condensing operator;
D O I
10.1016/S0362-546X(01)00512-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The system of second order functional differential equations (x(')(t) + L(x('))(t))' = F(x)(t) is considered. Here L : C-0(J;R-n) --> C-0(J;R-n) and F : C-1(J;R-n) --> L-1(J;R-n) are continuous operators. Sufficient conditions for the existence of at least 2(n) solutions of the above system satisfying the functional boundary conditions alpha (i)(x(i)) = A(i), max {x(i)(t) : t is an element of J} - min{x(i)(t) : t is an element of J} = B-i (i = 1,..., n) are given'. Here alpha (i) : C-0(J; R) --> R are continuous increasing functionals. and x = (x(1),...,x(n)). Existence results are proved by the topological degree method for alpha -condensing operators.
引用
收藏
页码:3925 / 3936
页数:12
相关论文
共 10 条
[1]  
[Anonymous], 1976, INTEGRAL INEQUALITIE
[2]  
[Anonymous], 1956, ACTA MATH ACAD SCI H
[3]  
[Anonymous], P CCS ATH GREEC NOV
[4]  
BRYKALOV SA, 1993, DIFF EQUAT, V29, P803
[5]  
Deimling K., 1985, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[6]  
Hartman P, 1964, ORDINARY DIFFERENTIA
[7]   Multiplicity results for functional boundary value problems [J].
Stanek, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (05) :2617-2628
[8]   Multiple solutions for some functional boundary value problems [J].
Stanek, S .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1998, 32 (03) :427-438
[9]   Multiplicity results for second order nonlinear problems with maximum and minimum [J].
Stanek, S .
MATHEMATISCHE NACHRICHTEN, 1998, 192 :225-237
[10]  
STANEK S, FUNCTIONAL BOUNDARY