Brezis-Nirenberg type theorems and multiplicity of positive solutions for a singular elliptic problem

被引:88
作者
Hirano, Norimichi [2 ]
Saccon, Claudio [1 ]
Shioji, Naoki [2 ]
机构
[1] Univ Pisa, Dept Appl Math Ulisse Dini, I-56126 Pisa, Italy
[2] Yokohama Natl Univ, Dept Math, Grad Sch Environm & Informat Sci, Yokohama, Kanagawa 2408501, Japan
基金
日本学术振兴会;
关键词
Brezis-Nirenberg type theorems; singular elliptic problem; positive solutions;
D O I
10.1016/j.jde.2008.06.020
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study Brezis-Nirenberg type theorems for the equation -Delta u + g(x, u) = f(x, u) in Omega. u = 0 on partial derivative Omega, where Omega is a bounded domain in R-N, g(x, .) is increasing and f is a dissipative nonlinearity. We apply such theorems for studying existence and multiplicity of positive solutions for the equation -Delta u = u(-q) + lambda u(p) in Omega, u = 0 on partial derivative Omega, where q > 0, p > 1 and lambda > 0. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:1997 / 2037
页数:41
相关论文
共 29 条
[1]   COMBINED EFFECTS OF CONCAVE AND CONVEX NONLINEARITIES IN SOME ELLIPTIC PROBLEMS [J].
AMBROSETTI, A ;
BREZIS, H ;
CERAMI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1994, 122 (02) :519-543
[2]  
[Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
[3]  
[Anonymous], 1993, TOPOL METHOD NONL AN, DOI DOI 10.12775/TMNA.1993.012
[4]  
BREZIS H, 1993, CR ACAD SCI I-MATH, V317, P465
[5]   POSITIVE SOLUTIONS OF NON-LINEAR ELLIPTIC-EQUATIONS INVOLVING CRITICAL SOBOLEV EXPONENTS [J].
BREZIS, H ;
NIRENBERG, L .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1983, 36 (04) :437-477
[6]  
Canino A, 2004, J CONVEX ANAL, V11, P147
[7]  
CANINO A, 1995, NATO ASI SER C-MATH, V472, P1
[8]   ON A SINGULAR NONLINEAR DIRICHLET PROBLEM [J].
COCLITE, MM ;
PALMIERI, G .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1989, 14 (10) :1315-1327
[9]  
COCLITE MM, 1991, B UNIONE MAT ITAL, V5B, P955
[10]   Quantitative deformation theorems and critical point theory [J].
Corvellec, JN .
PACIFIC JOURNAL OF MATHEMATICS, 1999, 187 (02) :263-279