Reference priors for linear models with general covariance structures

被引:1
作者
Zhao, Xin [1 ]
Wells, Martin T. [2 ]
机构
[1] Merck Res Labs, N Wales, PA 19454 USA
[2] Cornell Univ, Dept Stat Sci, Ithaca, NY 14853 USA
关键词
Covariance estimation; General linear models; Graphical models; Linear mixed models; MCMC; Penalized splines; Reference prior; Smoothing; Structural equation models; DISTRIBUTIONS; SELECTION; MATRIX;
D O I
10.1016/j.jspi.2012.01.005
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We develop a new class of reference priors for linear models with general covariance structures. A general Markov chain Monte Carlo algorithm is also proposed for implementing the computation. We present several examples to demonstrate the results: Bayesian penalized spline smoothing, a Bayesian approach to bivariate smoothing for a spatial model, and prior specification for structural equation models. (C) 2012 Published by Elsevier B.V.
引用
收藏
页码:2473 / 2484
页数:12
相关论文
共 50 条
  • [41] General design Bayesian generalized linear mixed models
    Zhao, Y.
    Staudenmayer, J.
    Coull, B. A.
    Wand, M. P.
    STATISTICAL SCIENCE, 2006, 21 (01) : 35 - 51
  • [42] Capturing between-tasks covariance and similarities using multivariate linear mixed models
    Navon, Aviv
    Rosset, Saharon
    ELECTRONIC JOURNAL OF STATISTICS, 2020, 14 (02): : 3821 - 3844
  • [43] On properties of BLUEs under general linear regression models
    Tian, Yongge
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2013, 143 (04) : 771 - 782
  • [44] Optimal equivariant prediction for high-dimensional linear models with arbitrary predictor covariance
    Dicker, Lee H.
    ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 1806 - 1834
  • [45] Effect of Smoothing in Generalized Linear Mixed Models on the Estimation of Covariance Parameters for Longitudinal Data
    Mullah, Muhammad Abu Shadeque
    Benedetti, Andrea
    INTERNATIONAL JOURNAL OF BIOSTATISTICS, 2016, 12 (02) : 1 - 19
  • [46] Bayesian analysis of two-piece location-scale models under reference priors with partial information
    Tu, Shiyi
    Wang, Min
    Sun, Xiaoqian
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2016, 96 : 133 - 144
  • [47] Hierarchical Shrinkage Priors for Regression Models
    Griffin, Jim
    Brown, Phil
    BAYESIAN ANALYSIS, 2017, 12 (01): : 135 - 159
  • [48] Empirical priors for reinforcement learning models
    Gershman, Samuel J.
    JOURNAL OF MATHEMATICAL PSYCHOLOGY, 2016, 71 : 1 - 6
  • [49] A comment on priors for Bayesian occupancy models
    Northrup, Joseph M.
    Gerber, Brian D.
    PLOS ONE, 2018, 13 (02):
  • [50] A cautionary tale on the effects of different covariance structures in linear mixed effects modeling of fMRI data
    van der Horn, Harm Jan
    Erhardt, Erik B.
    Dodd, Andrew B.
    Nathaniel, Upasana
    Wick, Tracey V.
    Mcquaid, Jessica R.
    Ryman, Sephira G.
    Vakhtin, Andrei A.
    Meier, Timothy B.
    Mayer, Andrew R.
    HUMAN BRAIN MAPPING, 2024, 45 (07)