Covariance estimation;
General linear models;
Graphical models;
Linear mixed models;
MCMC;
Penalized splines;
Reference prior;
Smoothing;
Structural equation models;
DISTRIBUTIONS;
SELECTION;
MATRIX;
D O I:
10.1016/j.jspi.2012.01.005
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We develop a new class of reference priors for linear models with general covariance structures. A general Markov chain Monte Carlo algorithm is also proposed for implementing the computation. We present several examples to demonstrate the results: Bayesian penalized spline smoothing, a Bayesian approach to bivariate smoothing for a spatial model, and prior specification for structural equation models. (C) 2012 Published by Elsevier B.V.
机构:
Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
ACT Inc, Iowa City, IA USAUniv Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
Liu, Ruitao
Chakrabarti, Arijit
论文数: 0引用数: 0
h-index: 0
机构:Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
Chakrabarti, Arijit
Samanta, Tapas
论文数: 0引用数: 0
h-index: 0
机构:Univ Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
Samanta, Tapas
Ghosh, Jayanta. K.
论文数: 0引用数: 0
h-index: 0
机构:
Purdue Univ, Dept Stat, W Lafayette, IN 47907 USAUniv Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA
Ghosh, Jayanta. K.
Ghosh, Malay
论文数: 0引用数: 0
h-index: 0
机构:
Univ Florida, Dept Stat, Gainesville, FL 32611 USAUniv Iowa, Dept Stat & Actuarial Sci, Iowa City, IA 52242 USA