Design of semi-tensor product-based kernel function for SVM nonlinear classification

被引:9
作者
Xue, Shengli [1 ]
Zhang, Lijun [2 ]
Zhu, Zeyu [2 ]
机构
[1] Yulin Univ, Sch Math & Stat, Yulin 719000, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Sch Marine Sci & Technol, Xian 710000, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
SVM; Semi-tensor product; STP-kernel; Nonlinear classification; Reproducing kernel Hilbert space (RKHS); SUPPORT VECTOR MACHINES;
D O I
10.1007/s11768-022-00120-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The kernel function method in support vector machine (SVM) is an excellent tool for nonlinear classification. How to design a kernel function is difficult for an SVM nonlinear classification problem, even for the polynomial kernel function. In this paper, we propose a new kind of polynomial kernel functions, called semi-tensor product kernel (STP-kernel), for an SVM nonlinear classification problem by semi-tensor product of matrix (STP) theory. We have shown the existence of the STP-kernel function and verified that it is just a polynomial kernel. In addition, we have shown the existence of the reproducing kernel Hilbert space (RKHS) associated with the STP-kernel function. Compared to the existing methods, it is much easier to construct the nonlinear feature mapping for an SVM nonlinear classification problem via an STP operator.
引用
收藏
页码:456 / 464
页数:9
相关论文
共 21 条
  • [11] MULTIPLE FUZZY RELATION AND ITS APPLICATION TO COUPLED FUZZY CONTROL
    Feng, Jun-e
    Lv, Hongli
    Cheng, Daizhan
    [J]. ASIAN JOURNAL OF CONTROL, 2013, 15 (05) : 1313 - 1324
  • [12] A kernel-free double well potential support vector machine with applications
    Gao, Zheming
    Fang, Shu-Cherng
    Luo, Jian
    Medhin, Negash
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2021, 290 (01) : 248 - 262
  • [13] Chaotic Deep Network for Mobile D2D Communication
    Li, Lixiang
    Chen, Yixin
    Peng, Haipeng
    Yang, Yixian
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (10): : 8078 - 8096
  • [14] Maity A., 2016, ARXIV
  • [15] Mohammed J.Z., 2020, DATA MINING MACHINE
  • [16] Support vector learning for semantic argument classification
    Pradhan, S
    Hacioglu, K
    Krugler, V
    Ward, W
    Martin, J
    Jurafsky, D
    [J]. MACHINE LEARNING, 2005, 60 (1-3) : 11 - 39
  • [17] Comprehensive review on twin support vector machines
    Tanveer, M.
    Rajani, T.
    Rastogi, R.
    Shao, Y. H.
    Ganaie, M. A.
    [J]. ANNALS OF OPERATIONS RESEARCH, 2024, 339 (03) : 1223 - 1268
  • [18] ON MULTINOMIAL COEFFICIENTS
    TAUBER, S
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1963, 70 (10) : 1058 - &
  • [19] An overview of statistical learning theory
    Vapnik, VN
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 1999, 10 (05): : 988 - 999
  • [20] Bayesian Nonlinear Support Vector Machines for Big Data
    Wenzel, Florian
    Galy-Fajou, Theo
    Deutsch, Matthaus
    Kloft, Marius
    [J]. MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2017, PT I, 2017, 10534 : 307 - 322