A High-Performance Nitro-Explosives Schottky Sensor Boosted by Interface Modulation

被引:76
作者
Yang, Zheng [1 ,2 ]
Dou, Xincun [1 ]
Zhang, Shengli [3 ]
Guo, Linjuan [1 ,2 ]
Zu, Baiyi [1 ]
Wu, Zhaofeng [1 ]
Zeng, Haibo [3 ]
机构
[1] Chinese Acad Sci, Key Lab Funct Mat & Devices Special Environm, Xinjiang Tech Inst Phys & Chem, Lab Environm Sci & Technol, Urumqi 830011, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Nanjing Univ Sci & Technol, Coll Mat Sci & Engn, Inst Optoelect & Nanomat, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
interface modulation; nitro-explosives; Schottky sensor; selectivity; TiO2; SILICON NANOWIRE ARRAYS; WALLED CARBON NANOTUBES; VAPOR; TNT; SENSITIVITY; MOLECULES; DIODE; FILMS; FIELD;
D O I
10.1002/adfm.201501120
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A high-performance Schottky sensor boosted by interface modulation is fabricated for the detection of trace nitro-explosives vapors. The interface modulation strategy results in a silicon nanowires (SiNWs) array/TiO2/reduced graphene oxide (rGO) sensor with sensitive and selective response toward nitro-explosives vapors. The response of the SiNWs array/TiO2/rGO sensor toward nitro-explosives vapors, such as 9 ppb 2,4,6-trinitrotoluene, 4.9 ppt hexogen, and 0.25 ppq octagon, is boosted by 2.4, 7.5, and 5 times with the insertion of TiO2. Superior selectivity is shown even compared with interfering gases of 10 ppm. Such good sensing performance can be attributed to the good sensing performance of the Schottky heterojunction-based sensor, the Schottky barrier height modulation with the insertion of TiO2, SiNWs array structure enhanced diffusion, and TiO2 nanoparticles enhanced adsorption. This is believed to be the first Schottky heterojunction-based sensor for nitro-explosives vapors detection. This work would open a new way to develop highly sensitive and selective sensors.
引用
收藏
页码:4039 / 4048
页数:10
相关论文
共 47 条
[1]   Nitro-Aromatic Explosive Sensing Using GaN Nanowire-Titania Nanocluster Hybrids [J].
Aluri, Geetha S. ;
Motayed, Abhishek ;
Davydov, Albert V. ;
Oleshko, Vladimir P. ;
Bertness, Kris A. ;
Rao, Mulpuri V. .
IEEE SENSORS JOURNAL, 2013, 13 (05) :1883-1888
[2]   Evaluation of solution-processed reduced graphene oxide films as transparent conductors [J].
Becerril, Hdctor A. ;
Mao, Jie ;
Liu, Zunfeng ;
Stoltenberg, Randall M. ;
Bao, Zhenan ;
Chen, Yongsheng .
ACS NANO, 2008, 2 (03) :463-470
[3]   Graphene-based liquid crystal device [J].
Blake, Peter ;
Brimicombe, Paul D. ;
Nair, Rahul R. ;
Booth, Tim J. ;
Jiang, Da ;
Schedin, Fred ;
Ponomarenko, Leonid A. ;
Morozov, Sergey V. ;
Gleeson, Helen F. ;
Hill, Ernie W. ;
Geim, Andre K. ;
Novoselov, Kostya S. .
NANO LETTERS, 2008, 8 (06) :1704-1708
[4]   Ultra-Broadband Photodetector for the Visible to Terahertz Range by Self-Assembling Reduced Graphene Oxide-Silicon Nanowire Array Heterojunctions [J].
Cao, Yang ;
Zhu, Jiayi ;
Xu, Jia ;
He, Junhui ;
Sun, Jia-Lin ;
Wang, Yingxin ;
Zhao, Ziran .
SMALL, 2014, 10 (12) :2345-2351
[5]   Ultrathin n-Type Organic Nanoribbons with High Photoconductivity and Application in Optoelectronic Vapor Sensing of Explosives [J].
Che, Yanke ;
Yang, Xiaomei ;
Liu, Guilin ;
Yu, Chun ;
Ji, Hongwei ;
Zuo, Jianmin ;
Zhao, Jincai ;
Zang, Ling .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (16) :5743-5750
[6]   Morphological Control of Single-Crystalline Silicon Nanowire Arrays near Room Temperature [J].
Chen, Chia-Yun ;
Wu, Chi-Sheng ;
Chou, Chia-Jen ;
Yen, Ta-Jen .
ADVANCED MATERIALS, 2008, 20 (20) :3811-+
[7]   Graphene-Silicon Schottky Diodes [J].
Chen, Chun-Chung ;
Aykol, Mehmet ;
Chang, Chia-Chi ;
Levi, A. F. J. ;
Cronin, Stephen B. .
NANO LETTERS, 2011, 11 (05) :1863-1867
[8]   2,4,6-Trinitrotoluene (TNT) Chemical Sensing Based on Aligned Single-Walled Carbon Nanotubes and ZnO Nanowires [J].
Chen, Po-Chiang ;
Sukcharoenchoke, Saowalak ;
Ryu, Koungmin ;
de Arco, Lewis Gomez ;
Badmaev, Alexander ;
Wang, Chuan ;
Zhou, Chongwu .
ADVANCED MATERIALS, 2010, 22 (17) :1900-+
[9]   CURRENT TRANSPORT IN METAL-SEMICONDUCTOR BARRIERS [J].
CROWELL, CR ;
SZE, SM .
SOLID-STATE ELECTRONICS, 1966, 9 (11-1) :1035-&
[10]   From molecules to solids with the DMol3 approach [J].
Delley, B .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (18) :7756-7764