Active Membrane Viscoelasticity by the Bacterial FtsZ-Division Protein

被引:13
|
作者
Lopez-Montero, Ivan [1 ]
Mateos-Gil, Pablo [2 ]
Sferrazza, Michele [1 ,3 ]
Navajas, Pilar L. [4 ]
Rivas, German [4 ]
Velez, Marisela [5 ,6 ]
Monroy, Francisco [1 ]
机构
[1] Univ Complutense Madrid, Dept Quim Fis 1, E-28040 Madrid, Spain
[2] Univ Autonoma Madrid, Fac Ciencias, Inst Nicolas Cabrera, Canto Blanco 28049, Spain
[3] Univ Libre Bruxelles, Dept Phys, Brussels, Belgium
[4] CSIC, CIB, Dept Ciencia Prot, E-28040 Madrid, Spain
[5] CSIC, Inst Catalisis & Petroleoquim, E-28049 Madrid, Spain
[6] IMDEA Nanociencia, Inst Madrileno Estudios Avanzados, Madrid 28049, Spain
关键词
ESCHERICHIA-COLI; LANGMUIR MONOLAYERS; POLYMER MONOLAYERS; FORCE GENERATION; SURFACE RHEOLOGY; Z-RING; DYNAMICS; ZIPA; ELASTICITY; RECONSTITUTION;
D O I
10.1021/la204742b
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
At the early stages of the division process in Escherichia coli, the protein FtsZ forms a septal ring at the midcell. This Z-ring causes membrane constriction during bacterial division. The Z-ring associates to the lipid membrane through several membrane proteins, ZipA among them. Here, a simplified FtsZ-ZipA model was reconstituted onto Langmuir monolayers based in E. coli polar lipid extract. Brewster angle and atomic force microscopy have revealed membrane FtsZ-polymerization upon GTP hydrolysis. The compression viscoelasticity of these monolayers has been also investigated. The presence of protein induced softening and fluidization with respect to the bare lipid membrane. An active mechanism, based on the internal forces stressed by FtsZ filaments and transduced to the lipid membrane by ZipA, was suggested to underlie the observed behavior.
引用
收藏
页码:4744 / 4753
页数:10
相关论文
共 50 条
  • [1] Cationic lipid enhances assembly of bacterial cell division protein FtsZ: A possible role of bacterial membrane in FtsZ assembly dynamics
    Kuchibhatla, Anuradha
    Bellare, Jayesh
    Panda, Dulal
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2011, 49 (04) : 737 - 741
  • [2] Targeting the Bacterial Division Protein FtsZ
    Hurley, Katherine A.
    Santos, Thiago M. A.
    Nepomuceno, Gabriella M.
    Huynh, Valerie
    Shaw, Jared T.
    Weibel, Douglas B.
    JOURNAL OF MEDICINAL CHEMISTRY, 2016, 59 (15) : 6975 - 6998
  • [3] Targeting the Assembly of Bacterial Cell Division Protein FtsZ with Small Molecules
    Schaffner-Barbero, Claudia
    Martin-Fontecha, Mar
    Chacon, Pablo
    Andreu, Jose M.
    ACS CHEMICAL BIOLOGY, 2012, 7 (02) : 268 - 276
  • [4] Inhibition of bacterial cell division protein FtsZ by cinnamaldehyde
    Domadia, Prerna
    Swarup, Sanjay
    Bhunia, Anirban
    Sivaraman, J.
    Dasgupta, Debjani
    BIOCHEMICAL PHARMACOLOGY, 2007, 74 (06) : 831 - 840
  • [5] Condensation of FtsZ filaments can drive bacterial cell division
    Lan, Ganhui
    Daniels, Brian R.
    Dobrowsky, Terrence M.
    Wirtz, Denis
    Sun, Sean X.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (01) : 121 - 126
  • [6] Estimating the bending modulus of a FtsZ bacterial-division protein filament
    Cytrynbaum, Eric N.
    Li, Yongnan Devin
    Allard, Jun F.
    Mehrabian, Hadi
    PHYSICAL REVIEW E, 2012, 85 (01):
  • [7] Coupling FtsZ filaments and morphodynamics during bacterial cell division
    Liu, Zhuan
    Guo, Kunkun
    RSC ADVANCES, 2014, 4 (100) : 56665 - 56676
  • [8] Ecteinascidin 770, A Tetrahydroisoquinoline Alkaloid, Targeting the Bacterial Cell Division Protein FtsZ
    Charoenwiwattanakij, Phennapa
    Pratuangdejkul, Jaturong
    Jaturanpinyo, Montree
    Lowtangkitcharoen, Witaya
    Suwanborirux, Khanit
    Nukoolkarn, Veena
    CHIANG MAI JOURNAL OF SCIENCE, 2018, 45 (07): : 2566 - 2580
  • [9] Genetic Evidence for Inhibition of Bacterial Division Protein FtsZ by Berberine
    Boberek, Jaroslaw M.
    Stach, Jem
    Good, Liam
    PLOS ONE, 2010, 5 (10):
  • [10] Complex state transitions of the bacterial cell division protein FtsZ
    Knapp, Benjamin D.
    Shi, Handuo
    Huang, Kerwyn Casey
    Hypothesis, New
    MOLECULAR BIOLOGY OF THE CELL, 2024, 35 (10)