This paper presents an experimental methodology of Design for Manufacturing (DFM) used for survey and analysis of geometric deviations of CNC Machine-Tools, through their final product. These deviations generate direct costs that can be avoided through the use of Intelligent Manufacturing Systems (IMS), by the application of Artificial Neural Networks (ANNs) to predict the fabrication parameters. Finally, after the experiments, it was possible to evaluate the experimental methodology used, the equations, the variables of data adjustment and thus enable the validation of the methodology used as a tool for DFM with high potential return on product quality, development time and reliability of the process with wide application in various CNC Machines. (C) 2015 Elsevier B.V. All rights reserved.
机构:
Spanish Natl Res Council, Inst Automat Ind, Madrid 28500, SpainSpanish Natl Res Council, Inst Automat Ind, Madrid 28500, Spain
Correa, M.
Bielza, C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Madrid, Dept Inteligencia Artificial, E-28660 Madrid, SpainSpanish Natl Res Council, Inst Automat Ind, Madrid 28500, Spain
Bielza, C.
Pamies-Teixeira, J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nova Lisboa, Fac Ciencias & Tecnol, P-2829516 Quinta Da Torre, Caparica, PortugalSpanish Natl Res Council, Inst Automat Ind, Madrid 28500, Spain
机构:
Spanish Natl Res Council, Inst Automat Ind, Madrid 28500, SpainSpanish Natl Res Council, Inst Automat Ind, Madrid 28500, Spain
Correa, M.
Bielza, C.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Politecn Madrid, Dept Inteligencia Artificial, E-28660 Madrid, SpainSpanish Natl Res Council, Inst Automat Ind, Madrid 28500, Spain
Bielza, C.
Pamies-Teixeira, J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Nova Lisboa, Fac Ciencias & Tecnol, P-2829516 Quinta Da Torre, Caparica, PortugalSpanish Natl Res Council, Inst Automat Ind, Madrid 28500, Spain