Crystallography companion agent for high-throughput materials discovery

被引:58
作者
Maffettone, Phillip M. [1 ,2 ]
Banko, Lars [3 ]
Cui, Peng [2 ]
Lysogorskiy, Yury [4 ]
Little, Marc A. [2 ]
Olds, Daniel [1 ]
Ludwig, Alfred [3 ]
Cooper, Andrew, I [2 ]
机构
[1] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA
[2] Univ Liverpool, Dept Chem & Mat Innovat Factory, Liverpool, Merseyside, England
[3] Ruhr Univ Bochum, Fac Mech Engn, Inst Mat, Bochum, Germany
[4] Ruhr Univ, Interdisciplinary Ctr Adv Mat Simulat ICAMS, Bochum, Germany
来源
NATURE COMPUTATIONAL SCIENCE | 2021年 / 1卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
MOLECULES; SYSTEM;
D O I
10.1038/s43588-021-00059-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The discovery of new structural and functional materials is driven by phase identification, often using X-ray diffraction (XRD). Automation has accelerated the rate of XRD measurements, greatly outpacing XRD analysis techniques that remain manual, time-consuming, error-prone and impossible to scale. With the advent of autonomous robotic scientists or self-driving laboratories, contemporary techniques prohibit the integration of XRD. Here, we describe a computer program for the autonomous characterization of XRD data, driven by artificial intelligence (AI), for the discovery of new materials. Starting from structural databases, we train an ensemble model using a physically accurate synthetic dataset, which outputs probabilistic classifications-rather than absolutes-to overcome the overconfidence in traditional neural networks. This AI agent behaves as a companion to the researcher, improving accuracy and offering substantial time savings. It is demonstrated on a diverse set of organic and inorganic materials characterization challenges. This method is directly applicable to inverse design approaches and robotic discovery systems, and can be immediately considered for other forms of characterization such as spectroscopy and the pair distribution function.
引用
收藏
页码:290 / 297
页数:8
相关论文
共 52 条
[41]   Inverse molecular design using machine learning: Generative models for matter engineering [J].
Sanchez-Lengeling, Benjamin ;
Aspuru-Guzik, Alan .
SCIENCE, 2018, 361 (6400) :360-365
[42]   Computationally-Guided Synthetic Control over Pore Size in Isostructural Porous Organic Cages [J].
Slater, Anna G. ;
Reiss, Paul S. ;
Pulido, Angeles ;
Little, Marc A. ;
Holden, Daniel L. ;
Chen, Linjiang ;
Chong, Samantha Y. ;
Alston, Ben M. ;
Clowes, Rob ;
Haranczyk, Maciej ;
Briggs, Michael E. ;
Hasell, Tom ;
Day, Graeme M. ;
Cooper, Andrew I. .
ACS CENTRAL SCIENCE, 2017, 3 (07) :734-742
[43]   Unsupervised phase mapping of X-ray diffraction data by nonnegative matrix factorization integrated with custom clustering [J].
Stanev, Valentin ;
Vesselinov, Velimir V. ;
Kusne, A. Gilad ;
Antoszewski, Graham ;
Takeuchi, Ichiro ;
Alexandrov, Boian S. .
NPJ COMPUTATIONAL MATERIALS, 2018, 4
[44]   Expediting Combinatorial Data Set Analysis by Combining Human and Algorithmic Analysis [J].
Stein, Helge Soeren ;
Jiao, Sally ;
Ludwig, Alfred .
ACS COMBINATORIAL SCIENCE, 2017, 19 (01) :1-8
[45]   Organic synthesis in a modular robotic system driven by a chemical programming language [J].
Steiner, Sebastian ;
Wolf, Jakob ;
Glatzel, Stefan ;
Andreou, Anna ;
Granda, Jaroslaw M. ;
Keenan, Graham ;
Hinkley, Trevor ;
Aragon-Camarasa, Gerardo ;
Kitson, Philip J. ;
Angelone, Davide ;
Cronin, Leroy .
SCIENCE, 2019, 363 (6423) :144-144
[46]   Automated Phase Mapping with AgileFD and its Application to Light Absorber Discovery in the V-Mn-Nb Oxide System [J].
Suram, Santosh K. ;
Xue, Yexiang ;
Bai, Junwen ;
Le Bras, Ronan ;
Rappazzo, Brendan ;
Bernstein, Richard ;
Bjorck, Johan ;
Zhou, Lan ;
van Dover, R. Bruce ;
Gomes, Carla P. ;
Gregoire, John M. .
ACS COMBINATORIAL SCIENCE, 2017, 19 (01) :37-46
[47]   Data management and visualization of x-ray diffraction spectra from thin film ternary composition spreads [J].
Takeuchi, I ;
Long, CJ ;
Famodu, OO ;
Murakami, M ;
Hattrick-Simpers, J ;
Rubloff, GW ;
Stukowski, M ;
Rajan, K .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2005, 76 (06)
[48]   Rapid Identification of X-ray Diffraction Patterns Based on Very Limited Data by Interpretable Convolutional Neural Networks [J].
Wang, Hong ;
Xie, Yunchao ;
Li, Dawei ;
Deng, Heng ;
Zhao, Yunxin ;
Xin, Ming ;
Lin, Jian .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (04) :2004-2011
[49]   Correlation between phase compatibility and efficient energy conversion in Zr-doped Barium Titanate [J].
Wegner, Maike ;
Gu, Hanlin ;
James, Richard D. ;
Quandt, Eckhard .
SCIENTIFIC REPORTS, 2020, 10 (01)
[50]   Automated Phase Segmentation for Large-Scale X-ray Diffraction Data Using a Graph-Based Phase Segmentation (GPhase) Algorithm [J].
Xiong, Zheng ;
He, Yinyan ;
Hattrick-Simpers, Jason R. ;
Hu, Jianjun .
ACS COMBINATORIAL SCIENCE, 2017, 19 (03) :137-144