Crystallography companion agent for high-throughput materials discovery

被引:58
作者
Maffettone, Phillip M. [1 ,2 ]
Banko, Lars [3 ]
Cui, Peng [2 ]
Lysogorskiy, Yury [4 ]
Little, Marc A. [2 ]
Olds, Daniel [1 ]
Ludwig, Alfred [3 ]
Cooper, Andrew, I [2 ]
机构
[1] Brookhaven Natl Lab, Natl Synchrotron Light Source 2, Upton, NY 11973 USA
[2] Univ Liverpool, Dept Chem & Mat Innovat Factory, Liverpool, Merseyside, England
[3] Ruhr Univ Bochum, Fac Mech Engn, Inst Mat, Bochum, Germany
[4] Ruhr Univ, Interdisciplinary Ctr Adv Mat Simulat ICAMS, Bochum, Germany
来源
NATURE COMPUTATIONAL SCIENCE | 2021年 / 1卷 / 04期
基金
英国工程与自然科学研究理事会;
关键词
MOLECULES; SYSTEM;
D O I
10.1038/s43588-021-00059-2
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The discovery of new structural and functional materials is driven by phase identification, often using X-ray diffraction (XRD). Automation has accelerated the rate of XRD measurements, greatly outpacing XRD analysis techniques that remain manual, time-consuming, error-prone and impossible to scale. With the advent of autonomous robotic scientists or self-driving laboratories, contemporary techniques prohibit the integration of XRD. Here, we describe a computer program for the autonomous characterization of XRD data, driven by artificial intelligence (AI), for the discovery of new materials. Starting from structural databases, we train an ensemble model using a physically accurate synthetic dataset, which outputs probabilistic classifications-rather than absolutes-to overcome the overconfidence in traditional neural networks. This AI agent behaves as a companion to the researcher, improving accuracy and offering substantial time savings. It is demonstrated on a diverse set of organic and inorganic materials characterization challenges. This method is directly applicable to inverse design approaches and robotic discovery systems, and can be immediately considered for other forms of characterization such as spectroscopy and the pair distribution function.
引用
收藏
页码:290 / 297
页数:8
相关论文
共 52 条
[21]   Deep Neural Network Enabled Space Group Identification in EBSD [J].
Kaufmann, Kevin ;
Zhu, Chaoyi ;
Rosengarten, Alexander S. ;
Vecchio, Kenneth S. .
MICROSCOPY AND MICROANALYSIS, 2020, 26 (03) :447-457
[22]   Rise of the Robo Scientists [J].
King, Ross D. .
SCIENTIFIC AMERICAN, 2011, 304 (01) :72-77
[23]  
Kingma D. P., 2015, INT C LEARNING REPRE
[24]   High-throughput determination of structural phase diagram and constituent phases using GRENDEL [J].
Kusne, A. G. ;
Keller, D. ;
Anderson, A. ;
Zaban, A. ;
Takeuchi, I. .
NANOTECHNOLOGY, 2015, 26 (44)
[25]   Beyond Ternary OPV: High-Throughput Experimentation and Self-Driving Laboratories Optimize Multicomponent Systems [J].
Langner, Stefan ;
Hase, Florian ;
Perea, Jose Dario ;
Stubhan, Tobias ;
Hauch, Jens ;
Roch, Loic M. ;
Heumueller, Thomas ;
Aspuru-Guzik, Alan ;
Brabec, Christoph J. .
ADVANCED MATERIALS, 2020, 32 (14)
[26]   A deep-learning technique for phase identification in multiphase inorganic compounds using synthetic XRD powder patterns [J].
Lee, Jin-Woong ;
Park, Woon Bae ;
Lee, Jin Hee ;
Singh, Satendra Pal ;
Sohn, Kee-Sun .
NATURE COMMUNICATIONS, 2020, 11 (01)
[27]   Synthesis of many different types of organic small molecules using one automated process [J].
Li, Junqi ;
Ballmer, Steven G. ;
Gillis, Eric P. ;
Fujii, Seiko ;
Schmidt, Michael J. ;
Palazzolo, Andrea M. E. ;
Lehmann, Jonathan W. ;
Morehouse, Greg F. ;
Burke, Martin D. .
SCIENCE, 2015, 347 (6227) :1221-1226
[28]   Robot-Accelerated Perovskite Investigation and Discovery [J].
Li, Zhi ;
Najeeb, Mansoor Ani ;
Alves, Liana ;
Sherman, Alyssa Z. ;
Shekar, Venkateswaran ;
Parrilla, Peter Cruz ;
Pendleton, Ian M. ;
Wang, Wesley ;
Nega, Philip W. ;
Zeller, Matthias ;
Schrier, Joshua ;
Norquist, Alexander J. ;
Chan, Emory M. .
CHEMISTRY OF MATERIALS, 2020, 32 (13) :5650-5663
[29]   Toward a Paradigm Shift in Electrocatalysis Using Complex Solid Solution Nanoparticles [J].
Loeffler, Tobias ;
Savan, Alan ;
Garzon-Manjon, Alba ;
Meischein, Michael ;
Scheu, Christina ;
Ludwig, Alfred ;
Schuhmann, Wolfgang .
ACS ENERGY LETTERS, 2019, 4 (05) :1206-1214
[30]   Rapid identification of structural phases in combinatorial thin-film libraries using x-ray diffraction and non-negative matrix factorization [J].
Long, C. J. ;
Bunker, D. ;
Li, X. ;
Karen, V. L. ;
Takeuchi, I. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (10)